
Qa
00

~OF

IrJ1 r..tVINAIIU4 U1 "11iB UN DERLYING

TASK SCHEDULING ALGORITHM
FOR AN ADA RUNTIME SYSTEM

THESIS

Gary Alen Whitted

Captain, USAF

AFIT/GCS/ENG/89D-18 .

DTIC7'i-i
ELECTE

DEC15198
DEPARTMENT OF THE AIR FORCE $

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY '

Wright-Patterson Air Force Base, Ohioj M o=5N STATEKME A

I A-gz 8 89 12 15 053
Mfgt=UUmbe d

a

AFIT/GCS/ENG/89D- 18

DETERMINATION OF THE UNDERLYING
TASK SCHEDULING ALGORITHM
FOR AN ADA RUNTIME SYSTEM

THESIS

Gary Alen Whitted
Captain, USAF

18 DTIC
S ELECTE

DEC51989 D
Bpv f

Approved for public release; distribution unlimited

AFIT/GCS/ENG/89D- 18

Abstract

The purpose of this thesis investigation was to determine whether the task scheduling algo-

rithm of an Ada compiler could be detected using a suite of Ada programs. This was done by

identifying the task parameters and algorithm characteristics which differentiate one scheduling

algorithm from the others. After these parameters and characteristics were identified, a set of

test cases was developed to encompass the various parameter relationshis=s required to detect the

execution of individual algorithms. These test cases were modeled using Ada programs. Then,

the programs were compiled and executed using several Ada compilers where the task scheduling

algorithms of five run-time systems was known. The execution results were analyzed to determine

whether the Ada programs were capable of revealing the task scheduling algorithm used by the

Ada run-time system. This analysis showed that the detection of five scheduling schemes is possi-

ble using a single Ada program. Recommendations are made to improve the current Ada program

leading to an automated tool in which the user analysis could be removed. -

xi

A FIT/GCS/ENG/89D-18

DETERMINATION OF THE UNDERLYING

TASK SCHEDULING ALGORITHM

FOR AN ADA RUNTIME SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Gary Alen Whitted, M.B.A, B.S.E

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgments

I wish to thank a number of people who helped me during the research on this thesis. In

particular, several members of the Language Control Facility (LCF) at the Aeronautical Systems

Division (ASD) Communications-Computer Systems Center provided invaluable assistance with

the Ada program compilation and execution phase of this thesis. Mr Tom Stripe provided me with

several hours of invaluable help on the LCF VAX computer. Mr Bobby Evans and Steve W\V1-,ii

provided encouragement, support, and use of their computers throughout the final months of Thits

effort.

My AFIT classmates also provided encouragement and assistance. In particular. Capt Steve

March helped me with some difficult and elusive problems with developing Ada programs for my

test cases.

I also wish to thank my thesis committee. Dr. Gary Lamont provided me with some valuable

insight into scheduling algorithm theory. Major David Umphress provided me with a wealth of

knowledge about the Ada language, in particular, Ada tasking constructs. A special thanks to my

thesis advisor, Major James Howatt. He provided en-ouragement and editing support throughout

this document. And his guidance and critical analysis helped me to achieve a successful thesis

conclusion.

I want to thank my children for their prayers and support even though I sper,, maly hours

away from home working on this thesis. A special thanks to my precious w~ie, Carol, for her

patience, prayers, support, and understanding throughout this whole ordeal.

Finally, I want to thank my Lord and Saviour, Jesus Christ for the wisdom, knowledge, For

understanding, and strength which He continually provides to me. Completing this thesis has

helped me fully appreciate that I can do all things through Christ Jesus, who strengthens me. Ln

Gary Alen Whitted 'n/

i 'rt Coegs

Oilf spf cia
ii ""; t'l .) 1

Table of Contents

Page

Acknowledgments I

Table of Contents ill

List of Figures ... vi

List of Tables ... vii

Abstract xi

I. Introduction 1-1

1.1 Background 1-1

1.2 Statement of the Problem 1-2

1.3 Summary of Current Knowledge 1-3

1.4 Assumptions 1-4

1.5 Scope of the Thesis Project 1-4

1.6 Standards 1-5

1.7 Approach/Methodology 1-5

1.8 Thesis Organization 1-6

II. Literature Review 2-1

2.1 Current Research Observations of Ada Task Scheduling 2-1

2.1.1 Real-Time Scheduling Requirements 2-1

2.1.2 Specific Ada Limitations. 2-2

2.1.3 Previous Attemps to Solve Ada's Limitations 2-4

2.2 Scheduling Algorithm Detection Research 2-7

2.2.1 Scheduling Algorithm Characteristics 2-9

2.2.2 Scheduling Algorithm Descriptions 2-10

2.3 Summary 2-14

iii

Ill. Requirements Analysis for Ada Task Scheduling Detection 3-1

3.1 Scheduling Algorithm Characteristics/Parameters 3-1

3.2 Predicted Execution Results for the Test Cases 3-5

IV. Design and Development of Ada Task Schedule Detection Test Cases 4-1

4.1 Ada Constructs Used for Implementation- 1

4.1.1 Task Arrival Times 1-2

4.1.2 Task Service Time 4-6

4.1.3 CPU Burst Requirements- 6

4.1.4 Task Priorities . 4-7

4.1.5 Measurement of Start and Finish Times 4-S

4.2 Overall Parent Program Structure 4-8

V. Execution Results for Ada Task Scheduling Detection 5-1

5.1 Alsys PC AT Ada Compiler 5-1

5.1.1 Results with SLICE Option Set to Zero 5-2

5.1.2 Results with SLICE Option Set to 50 ms. 5-4

5.2 VAX Ada Compiler 5-6

5.2.1 Results without the 'Pragma TIME.SLICE ()' Statement. 5-7

5.2.2 Results with the 'Pragma TIME-SLICE (0.05)' Statement. 5-8

5.3 Meridian AdaVantage Compiler 5-10

5.4 Elxsi/Verdix Ada Compiler 5-11

5.5 Encore/Verdix Concurrent Ada Compiler 5-13

5.6 Summary 5-14

VI. Conclusion and Recommendations 6-1

6.1 C onclusions . 6-1

6.2 Recommendations 6-2

6.3 Thesis Contribution 6-4

iv

Page

Appendix A. Appendix A: Predicted Gantt Charts for Test Gases I through 27 A-1

Appendix B. Appendix B: Test Case Execution Results B-I

Bibliography BIB-i

Vita. ITA-1

'I

List of Figures

Figure Page

4. 1. Ada Task States......

vi

List of Tables

Table Page

3.1. Algorithm Detection Parameter Relationships for Test Cases 1 thru 27 3-3

3.2. Predicted Execution Results for Test Cases 1 - 9 3-6

3.3. Predicted Execution Results for Test Cases l0 - 18 3-7

3.4. Predicted Execution Results for Test Cases 19 - 27 3-8

3.5. Scheduling Algorithm Detection Summary 3-9

3.6. Task Parameter Relationships for Test Case 28 3-i 1

3.7. Predicted FCFS Gantt Chart for Test Case 28 3-11

3.8. Predicted RR Gantt Chart for Test Case 28 3-12

3.9. Predicted SJF Gantt Chart for Test Case 28 3-12

3.10. Test Case 28 FCFS Prediction Summary 3-14

3.11. Test Case 28 RR Prediction Summary 3-14

3.12. Test Case 28 Dynamic SJF Prediction Summary 3-15

5.1. Execution Results Summary 5-15

A.1. Predicted Gantt Chart (SA < SB) for Test Case 1 A-2

A.2. Predicted Gantt Chart (SB < SA) for Test Case 1 A-2

A.3. Predicted Gantt Chart for Test Case 2 A-2

A.4. Predicted Gantt Chart for Test Case 3 A-3

A.5. Predicted Gantt Chart for Test Case 4 A-3

A.6. Predicted Gantt Chart for Test Case 5 A-3

A.7. Predicted Gantt Chart for Test Case 6 A-4

A.8. Predicted Gantt Chart for Test Case 7 A-4

A.9. Predicted Gantt Chart for Test Case 8 A-4

A. l0.Predicted Gantt Chart for Test Case 9 A-5

A. 1 l.Predicted Gantt Chart (SA < SB) for 'Test Case 10 A-5

vii

Table P'age

A. 2.Predicted Gantt Chart (SB < SA) for Test Case 10. A-5

A. 13. Predicted Gantt Chart for Test Case I11.. A-6

A. 14.Predicted Gantt Chart for Test Case 12. A-6

A. 15.Predicted Gantt Chart for Test Case 13....................... A 6

A. 16.Predicted Gantt Chart for Test Case 14 A-7

A. 17. Predicted Gantt Chart for Test Case 15 A-7

A. 18.Predicted Gantt Chart for Test Case 16. A-7

A. 19. Predicted Gantt Chart for Test Case 17. A-8

A.20.Predicted Gantt Chart for Test Case 18. A-8

A.21.Predicted Gantt Chart (SA < SB) for Test Case 19. A-8

A.22.Predicted Gantt Chart (SB < SA) for Test Case 19. A-9

A.23.Predicted Gantt Chart for Test Case 20. A-9

A.24.Predicted Gantt Chart for Test Case 21. A-9

A.25.Predicted Gantt Chart for Test Case 22 A-10

A.26.Predicted Gantt Chart for Test Case 23 A-10

A.27.Predicted Gantt Chart for Test Case 24 A-10

A.28.Predicted Gantt Chart for Test Case 25 A-1i

A.29.Predicted Gantt Chart for Test Case 26 A -11

A.30.Predicted Gantt Chart for Test Case 27 A-11

B.i. Alsys PC AT Ada Compiler Results B-2

B. 2. Alsys PC AT Ada Compiler Results (Cont'd). B-3

B. 3. Alsys PC AT Ada Compiler Results (Cont'd). B-4

BA4. Alsys PC AT Ada Compiler Results (Cont'd). B-5

B.5. Alsys PC AT Ada Compiler Results (Cont'd). B-5

B.6. Alsys PC AT Ada Compiler Results (Cont'd). B-6

B.7. Alsys PC AT Ada Compiler Results (Cont'd). B-7

B.8. Alsys PC AT Ada Compiler Results (Cont'd). B-8

viii

Fable [I'ige

B.9. Alsys PC AT Ada Compiler Results (Cont'd) B-9

B.1OAlsys PC AT Ada Compiler Results (Cont'd) B-10

B. 1.Alsys PC AT Ada Compiler Results (Cont'd) B-10

B. 12. Alsys PC AT Ada Compiler Results (Cont'd). B-11

B. 13. VAX Ada Compiler Results 3-12

B. 14.VAX Ada Compiler Results (Cont'd). 13- 13

B. 15. VAX Ada Compiler Results (Cont'd) 1-14

B. 16. VAX Ada Compiler Results (Cont'd) B-15

B. 17.v'AX Ada Compiler Results (Cont'd). 13- 15

B. 18. VAX Ada Compiler Results (Cont'd). B-16

B. 19. VAX Ada Compiler Results (Cont'd). B- 17

B.20.VAX Ada Compiler Results (Cont'd). B-18

B.2l.VAX Ada Compiler Results (Cont'd). 13- 19

B.22.VAX Ada Compiler Results (Cont'd). B-20

B.23.VAX Ada Compiler Results (Cont'd). B-20

B.24.VAX Ada Compiler Results (Cont'd) B-21

B.25.Meridian AdaVantage Compiler Results. B-22

B.26.Meridian AdaVantage Compiler Results (Cont'd) B-23

B.27.Meridian AdaVantage Compiler Results (Cont'd)- 24

B.28.Meridian AdaVantage Compiler Results (Cont'd) B-25

B.29.Elxsi/Verdix Ada Compiler Results. B-26

B.30.Ebcsi/Verdix Ada Compiler Results (Cont'd). -27

B. 31. Elxsi/Verdix Ada Compiler Results (Cont'd) B-28

B .32. Elxsi/Verdix Ada Compiler Results (Cont'd) B-29

B.33.Elxsi/Verdix Ada Compiler Results (Cont'd). 8-29

B.34.Elxsi/Verdix Ada Compiler Results (Cont'd). B-30

B.35.Encore/Verdix Concurrent Ada Compiler Results B-3l

ix

fable Page

B.36.Encore/Verdix Concurrent Ada Compiler Results (Cont'd) B-32

B.37,Encore/Verdix Concurrent Ada Compiler Results (Cont'd) B-33

B.38.Encore/Verdix Ada Compiler Results (Cont'd) B-34

B.39.Encore/Verdix Ada Compiler Results (Cont'd) B-34

B.:O.Encore/Verdix Ada Compiler Results (Cont'd) B-35

'C

DETERMINATION OF THE UNDERLYING

TASK SCHEDULING ALGORITHM

FOR AN ADA RUNTIME SYSTEM

1. Introduction

Since DoD regulations mandate the use of Ada for real-time systems development, predictable

Ada task scheduling performance is important to the software developers of real-time DoD systems.

Current Ada tasking rules produce task scheduling results which are unpredictable and implemen-

tation dependent. A method to identify the underlying task scheduling algorithm used by a given

compiler would aid immensely in designing real-time systems with Ada. This thesis addresses

the development of a suite of Ada programs to reveal, for any Ada compiler, the underlying task

scheduling algorithm it uses. Research in this area should result in a compiler evaluation tool for

use by software developers to allow them to determine the scheduling algorithm used by a given

Ada run-time system.

I.1 Background

An Ada task is a programming entity that can be executed in parallel with other programming

entities or can be considered to be executed by a logical processor of its own. Due to their unique

timing requirements, "real-time systems are designed as a set of cooperating concurrent processes

(Ada tasks) using the Ada tasking model" (5:49). The Ada tasking model, which includes task

synchronization and rendezvous, along with the 'DELAY' statement and the 'PRIORITY' pragma,

is the basic framework for real-time system design in Ada. The general requirements of Ada task

scheduling, task rendezvous, and task synchronization processing are outlined in Chapter 9 of the

Ada Language Reference Manual (LRM), ANSI/MIL-STD-1815A (12:Sec 9).

1-1

Specific characteristics of the underlying algorithm used to implement task scheduling on a

given Ada compiler has been left to the discretion of the individual compiler vendor. Typically, the

task scheduling algorithm used by the compiler vendor is proprietary and not available to real-time

system designers. The efficiency of a real-time system, and the specific order in which tasks are

serviced can be significantly affected by the type of scheduling algorithm used. The ambiguity in

the Ada tasking requirements has led to several problems with the development and portability

of real-time systems using Ada. Therefore, a method of determining the type of task scheduling

algorithm used, would help Mission Critical Computer Resource (MCCR) software developers select

the compiler which is best suited for their particular application.

1.2 Statement of the Problem

As noted above, the problem is to identify the task scheduling algorithm used by a given

Ada run-time system. One possible method of determining a compiler's underlying task scheduling

algorithm is to produce a test suite of Ada programs which, when compiled on a given compiler and

run, will reveal the scheduling algorithm used by that compiler. The objective of this thesis is to

determine whether it is experimentally feasible to design such a tool. If it is feasible, I will design

a sample testbed of Ada programs and demonstrate the ability to identify a compiler's underlying

task scheduling algorithm.

There are several difficulties associated with developing an Ada task scheduling evaluation

tool. First, developing this tool may not be feasible. The question of feasibility centers around the

problem of capturing the task scheduling characteristics from the run-time system using high-level

programs. Next, if tho extraction is feasible, determining which scheduling characteristics need to

be considered and which can be extracted using Ada may be difficult. Finally, the analysis, design,

and coding of any Ada program can be very difficult. The research into how an Ada run-time

system schedules tasks may be examining Ada task scheduling at a much lower level than any

1-2

previous research. But, the current literature clearly ilhistrates that the Ada tasking model has

some limitations which need further investigation.

1.3 Summary of Current Knowledge

The only construct provided in Ada to specifically designate the order for task execution is

the pragma PRIORITY static expression statement. However, this only provides control over task

execution when two tasks of different priority are awaiting execution. The static expression is an

integer representing the priority such that a lower value indicates a lower degree of urgency. The

Ada LRM provides only the following rule with regard to task scheduling:

If two tasks with different priorities are both eligible for execution and could sensibly
be executed using the same physical processors and the same other processing resources,
then it cannot be the case that the task with the lower priority is executing while the
task with the higher priority is not. (12:Sec 9,16)

Although this rule specifies that a higher priority task will run prior to a lower priority task when

they are both ready to run, there is no indication as to which task will execute first when the

two tasks have equal priority or have no priority defined. Additionally, there is no indication as

to whether a lower priority task which is executing should be interrupted when a task of higher

priority becomes ready. Finally, there is no indication as to which rendezvous will be executed first

when there are several tasks awaiting separate entry calls at an open alternative select statement.

As noted above, except for the PRIORITY rule, specific requirements of the underlying

algorithm used to implement task scheduling on a given Ada compiler is left to the discretion of

the individual compiler vendor. There are many scheduling algorithms available for the compiler

vendor to choose. Since the specific order in which tasks are serviced can be significantly affected by

the scheduling algorithm used, the efficiency of a real-time system developed in Ada is significantly

impacted by the scheduling algorithm.

1-3

This ambiguity in the requirements for Ada task scheduling has led to several problems

with the development of real-time systems using Ada. Not all of the literature focuses on the same

problems, but the articles discussed later in chapter 2 identify several common problems. There are

two avenues of research which can be pursued to resolve the ambiguous Ada tasking environment

problem: (1) operate blindly, without any knowledge of a compiler's task scheduling algorithm.

and identify problem work-arounds, or (2) detect the underlying task scheduling algorithm and

select the compiler which best supports the scheduling requirements of the real-time system under

development.

1.4 Assumptions

The following assumptions were made at the onset of this thesis effort. First, I assumed

that specific information about the underlying task scheduling algorithm used by at least one Ada

compiler would be available. With this information, I planned to validate the testbed of Ada

programs for at least that one case. Without the information, I would not be assured that the

testbed worked properly.

Additionally, after the initial research into the characteristics of scheduling algorithms, I

decided to narrow down the scope of this detection effort. Therefore, I made the assumption that

most Ada compilers probably use one of the simple, well-known scheduling algorithms (commonly

used in operating systems) for task scheduling.

1.5 Scope of the Thesis Project

There are many different scheduling characteristics and parameters which can be included

in a given scheduling algorithm. Initially, I tried to look at all scheduling algorithms, including

those which are applicable to real-time processing. But, this included many complex algorithms

which were not very likely candidates for use in Ada run-time systems. So, the scope of this

1-4

project's software development efiort (i.e. the testbed) was limited to simple scheduling algorithms

with characteristics which are detectable by running a high-level Ada program. Therefore, to

demonstrate the feasibility of this approach, the final testbed was limited to only differentiating

between one of five basic scheduling algorithms.

It is clear from the literature that further research into scheduling algorithms and possible

changes to the Ada rules are currently being pursued to improve Ada's real-time efficiency. Short

of developing any new algorithms or changing the Ada language rules, providing a tool to identify

the underlying task scheduling algorithm used by an Ada run-time system will be an asset to the

real-time system designer. Successful completion of this thesis research should lay the groundwork

for providing such a tool.

1.6 Standards

The Ada Language Reference Manual, MIL-STD-1815A, was used and referenced throughout

this research. This standard identifies the constructs and rules of the Ada language. Also, it is the

standard by which compiler vendors develop Ada compilers and by which the Ada compilers are

validated.

1. 7 Approach/Methodology

First, I refined the problem definition through an in-depth literature search. This research

focused specifically on run-time scheduling characteristics which can be detected by a high-level

language. Then, I identified a set of test cases which could be used to reveal the scheduling

algorithm characteristics exhibited by a run-time system. Next, I defined and analyzed the software

requirements. Then, I designed, coded, and tested the Ada programs for the testbed. Finally, I

validated the testbed with three Ada compilers for which the underlying task scheduling algorithm

was known.

1-5

1.3 Thesis Organizalson

In chapter 2 of this thesis, a detailed literature search is provided. This literature search

includes a look at real-time scheduling problems with Ada and an overview of the work being done

to resolve those problems. It also includes an overview of scheduling algorithm research, a discussion

of scheduling algorithm characteristics, and the description of several scheduling algorithms.

In chapter 3, 1 have documented the analysis which I used to determine what requirements

were necessary to detect the task scheduling characteristics of an Ada run-time system. The task

parameters which were controled, as well as the scheduling characteristics which were measured, are

also identified. Then, the test cases which incorporate different combinations of the task parameter

relationships are discussed. Finally, the execution result predictions are listed and discussed.

Chapter 4 describes the design and development of the Ada programs which model the test

cases. This, includes a discussion of the Ada constructs which were used and the overall structure

of the parent programs. In chapter 5, I provide the results of executing the test case programs an

several Ada compilers. The results of the execution on each of the five compilers is tabulated, and

the analysis of these results produced from each compiler is discussed. Finally, in chapter 6, the

conclusions reached as a result of this research are provided and some reccomendations for further

research in this area are made.

1-6

It. Literature Review

The first part of this review addresses current research in the problems associated with the use

of Ada tasking constructs. Fundamental real-time scheduling requirements, the limitations encoun-

tered with Ada providing these requirements, some methods used to investigate these limitations.

and some suggested work-arounds are discussed in the first part. The second part of this review

addresses task scheduling algorithm characteristics. It describes the common task scheduling pa-

rameters, the available scheduling algorithms, and the parameters which should be measurable for

an Ada run-time system.

2.1 Current Research Observations of Ada Task Scheduling

2.1.1 Real- Time Scheduling Requirements. There are several fundamental requirements of a

real-time programming language. To facilitate proper scheduling in real-time system design, Dennis

Cornhill identified the need for an integrated approach to critical system resource management

to avoid missed deadlines or underutilization of resources; a predictable scheduling algorithm; a

scheduler which manages both periodic and aperiodic jobs, as well as jobs with stochastic execution

times; and a preemptive scheduler (8:34-35). Douglass Locke has also pointed out that the run-time

environment should utilize minimal overhead for resource allocations, have predictable response

times, and have modifiable priorities (22:51-52).

In the articles noted above, the authors described why their identified requirements are es-

sential to real-time processing and how Ada falls short of satisfying these requirements. While the

identification of an Ada run-time system's task scheduling algorithm will not help satisfy all of the

requirements noted by Cornhill and Locke, it will aid in predicting task scheduling and response

time, determining the types of jobs which the scheduler can manage, and identifying whether the

scheduler is preemptive. To design effective real-time systems, software design engineers need to

know how the run-time system schedules tasks for execution. This is necessary to understand which

2-1

real-time scheduling requirements are being satisfied by the run-time system, and which need to be

satisfied through the application software.

2.1.2 Specific Ada Limitations. There are several limitations associated with using Ada for

real-time system design. These limitations have been identified as priority inversion, nondeter-

ministic task execution, difficult execution of preemptive scheduling, and the lack of a real-time

executi ve. Each of these limitations are discussed below.

Priority inversion is a condition where low priority tasks are allowed to needlessly block higher

prinrity ticks. The occurrence of priority inversion in Ada programs was identified by several

authors as a significant limitation to designing real-time systems with Ada (4:8) (9:30) (19:53)

(21:39) An example of this would be when there is a server task of priority Ps servicing a set of

consumer tasks with priorities PL through PH, where PL is the lowest consumer priority and Plf is

the highest. In the cases where PS = PLorPs = PH, the servicing of consumer-server rendezvous

would be nondeterministic due to Ada's priority rule. Therefore, the two cases where PS < PL or

Ps > PH are used to illustrate priority inversion. In the first case, if the server task is not ready to

accept the request and there are other consumer tasks ready to execute, a high priority consumer

task may be blocked while calling the server task. In the second case, a high priority consumer

task which has just become eligible for execution may be preempted by the server task which is

doing work for a low priority consumer task (9:31). In both cases, the task which is started by the

scheduler may not be the one with the highest priority of the tasks which are ready to run.

Dennis Cornhill suggested the priority inheritance scheme as a work-around to prevent priority

inversion. With this scheme the priority of the clients waiting for service is passed on to (or inherited

by) the server task. In this way, "priority inversion can be avoided if the server always selects

for service the highest priority waiting client and inherits its priority from its waiting clients as

well"(9:32). But, in Ada, since there is only a single level of priority passing during a rendezvous,

the server only inherits the priority of the first-level client if that client's priority is higher than

2-2

that of the server. The server doesn't inherit the priority of any second-level clients which are

waiting (9:32). Thus, the rules of an Ada rendezvous illustrate that Ada's limited form of priority

inheritance is not adequate to prevent priority inversion.

The authors of three separate articles revealed that Ada exhibits nondeterministic task ex-

ecution behavior because of the way it handles open alternative select statements and because of

its First In/First Out (FIFO) entry call queuing (4:8) (21:39) (23:49). Since there are separate

queues associated with each entry call, there are several queues associated with an open alternative

select statement. The priority of each queue corresponds to either the priority of the task in which

the entry call is located, or the priority of the calling task, whichever is higher. The queuing of

individual entry calls is FIFO when all tasks are allocated with the same priority, but the selection

of which queue to service first at an open alternative select statement is not specified. Thus, when

all tasks are allocated with the same priority or without any priority, the results are unspecified by

the Ada LRM and implementation-dependent (1:43) (8:34). This results in the system designer's

lack of control over the execution of several time critical tasks.

Another problem, somewhat related to the priority inversion problem, is the difficulty in

executing preemptive scheduling within the Ada run-time environment. Since Ada requires all

instances of the same task type to have the same priority, and that priority cannot change dy-

namically, preemptive scheduling is difficult without the costly overhead of special priority passing

paradigms (5:50) (1:43,45). In some Ada run-time systems, a Round-Robin (time-sliced) algorithm

may actually be employed for scheduling task execution. Thus, a given Ada run-time systems may

already incorporate a preemptive algorithm at the lowest level of task scheduling. If this type of

scheduling algorithm could be detected, other types of more sophisticated preemptive scheduling

may be possible at the overall system level.

In An Assessment of the Overhead Associated with Tasking Facilities and Task Paradigms in

Ada, Thomas Burger identified what he considers to be Ada's key limitation by stating:

2-3

Since Ada does not include a real-time executive, task activation and termination are
not accomplished via programmer written executive service requests. Task activation
and termination in Ada is a part of the tasking model semantics, and is performed
automatically based on an elaborate et of rules. (5:51)

The task scheduling portion of this 'elaborate set of rules' consists of the single rule noted above,

and the ambiguity of this rule has already been discussed. Without a real-time executive, the real-

time system developer must try to simulate a real-time environment using the components of the

Ada tasking model. Using the Ada tasking model forces the developer to rely on the Ada run-time

system to schedule task execution.

Since Ada's task scheduling rule is so ambiguous and the timing overhead associated with

tasking is so excessive, an efficient real-time system cannot be designed using Ada as it is currently

defined. This problem may be overcome if the designer can identify and understand the task

scheduling algorithm being used by several Ada run-time systems, then select the appropriate

Ada compiler and design the real-time system accordingly. Additionally, if the underlying task

scheduling algorithm is known, the designer may be able to avoid priority inversion, eliminate

nondeterministic task execution, and more readily design preemptive scheduling systems in Ada.

Since Ada's rules for task scheduling are so ambiguous, an efficient real-time system cannot be

designed using Ada unless the designer can identify and understand the task scheduling algorithm

being used.

2.1.3 Previous Attemps to Solve Ada's Limitations. In 1987, Dennis Cornhill identified a

stabilized rate monotonic algorithm as a potential way of facilitating real-time system design,

but pointed out that current Ada rules prevent the use of this type of algorithm. With this

algorithm "certain high priority tasks run for limited periods only. When this time period elapses,

if the execution has not been completed, the job must be preempted by lower priority jobs for

another well defined length of time" (8:34). Thus, the stabilized rate monotonic algorithm uses

information about job importance, periodicity, and average and worst case execution times for

2-4

scheduling decisions. In order to permit use of hard deadline scheduling algorithms (i.e. the

stabilized rate monotonic algorithm), Cornhill concluded that two areas of Ada need to be changed.

First, all run-time scheduling operations should consider a task's priority. Second, "constraints on

the definitions for priority and the language's scheduling policy should be relaxed" (8:35-37). Once

again, if the underlying task scheduling algorithm is known, designing hard deadline scheduling

systems with Ada may be feasible without changing the language. However, software which is

based on a particular algorithm may not be portable.

While leading the Tasking session at the 1987 ACM International Workshop on Real-Time

Ada Issues, Cornhill summarized the session with several recommendations. First, he suggested

that deadline scheduling problems be addressed in the 9X revision to Ada. Next, he suggested that

a clarification be issued by the Ada Language Maintenance Panel to eliminate the synchronization

point of the 'ACCEPT' statement for an interrupt. And finally, he noted that built-in priority

management packages should be provided by compiler vendors (7:32).

At the same workshop, Gary Frankel identified four special concurrency paradigms (moni-

tor/process structure, asynchronous message passing, interrupt procedures, and event signaling) to

make Ada tasking useful. Using these special case paradigms, Frankel claimed that "Ada tasking

can be made as efficient as any other method of concurrency programming" (14:47-48).

Several proposed environments were presented at the 1988 ACM International Workshop on

Real-Time Ada Issues and published in Ada Leiters, 1988 Special Edition. In A Tesibed for Inves-

tigating Real-Time Ada Issues, Mark Borger discussed the Software Engineering Institute's (SEI)

'Ada Embedded Systems Testbed' project which they used to "provide a real-time laboratory envi-

ronment for conducting experiments using Ada and investigating real-time Ada issues" (4:7). Using

this testbed, researchers at SEI investigated some promising real-time scheduling algorithms that

were developed to overcome Ada's aperiodic task servicing problem. Specifically, they looked at

the rate monotonic algorithm, a priority inheritance based scheduling algorithm, and a deferrable

2-5

server algorithm. Implementation of these algorithms revealed that researchers need to look at so-

lutions which are either "constrained by current Ada implementations" or "involve legal extensions

or allowable interpretations of the language semantics" (4:7-10). Although the researchers at SEI

looked at high-level scheduling algorithms, it may be possible to use a similar testbed to identify

the low-level task scheduling algorithm used by an Ada run-time system.

Two other articles presented at the 1988 ACM Workshop addressed the rate monotonic al-

gorithm. In his article, John B. Goodenough, another researcher at SEI, showed that the basic

priority inheritance and priority ceiling protocols (both rate monotonic algorithms) corrected Ada's

unbounded priority inversion problem. Although the priority ceiling protocol seemed to perform

well, researchers at SEI are trying to extend the protocol and verify its utility (16:24). In a separate

article, Douglass Locke described an experiment using the rate monotonic algorithm in a modified

Ada run-time environment which "confirmed earlier theoretical analysis that priority inheritance

can provide substantial benefits" (21:40-42).

In work totally unrelated to the 1988 ACM Workshop, Jane W.S. Liu proposed an Imprecise

Computation Approach to improve on the rate monotonic algorithm's schedulability and processor

utilization during fluctuating system loads. Liu suggested that the deficiencies in Ada's existing

priority mechanism could be corrected by introducing data structures (i.e. tables of repetition rates

and deadlines) at link-time which cooperate with the run-time system and have little impact on

the existing language definition (20:33-34).

The discussion above reveals that most of the research done thus far has focused on Ada's

limitations with respect to real-time design, on work-arounds to use Ada for real-time design,

and on suggestions for changing Ada to improve it's real-time capabilities. These work-arounds

appear in the form of high-level algorithms implemented using the Ada tasking model. But, I have

found no evidence of research in the area of task scheduling algorithm detection for Ada run-time

systems. Since there are many possible algorithms which could be used by an Ada run-time system

2-6

for task scheduling, detection of the specific scheduling algorithm may be impossible if the scope

of detection includes all possible algorithms. But, it seems reasonable to narrow this scope to

a few simple, well-known algorithms which are the most likely to be used by an Ada compiler.

With this restriction, it may be possible select the Ada compiler which exhibits characteristics of

the scheduling algorithm most appropriate for a given real-time application. That concept is the

thrust of this research effort.

2.2 Scheduling Algorithm Detection Research

According to Coffman and Kleinrock, "the goal of scheduling algorithms is to provide the

population of users with a high grade of service (rapid response, resource availability, etc.) at the

same time maintaining an acceptable throughput rate" (6:11). Although their statement was made

with regard to computer scheduling in general, it also applies specifically to task scheduling within

an Ada run-time system. However, within an Ada run-time system, the users are represented by

the individual tasks awaiting execution and an acceptable throughput rate is achieved when all

tasks are serviced in a manner such that all deadlines are met.

When designing an Ada program to support real-time applications, the designer has to be

concerned with time-critical processes (TCPs). According to Omri Serlin, TCPs are "computational

procedures bound by hard deadlines", such that failure to meet the deadline "results in an irrepara-

ble damage to the computation" (24:925). When dealing with real-time applications, an efficient

scheduling algorithm is one that "guarantees to each TCP sufficient processor time to complete its

task before its dead!ine, while minimizing forced idle CPU time" (24:925). Scheduling algorithms of

this nature are called Hard-Deadline scheduling algorithms. Typically, Hard-Deadline algorithms

are much more complex than standard scheduling algorithms and are not likely to be implemented

as an Ada run-time system's algorithm. When such an algorithm is required for a real-time system,

it is implemented on top of the Ada run-time systems using special tasking paradigms.

2-7

In general, an Ada compiler may be required to produce a run-time system which controls the

scheduling of tasks on multiple processors. However, this is only the case when there are parallel

processors available in the hardware architecture. Though this is becoming more commonplace in

large and medium scale co-mputer systems, it is not the case with small and embedded computer

systems. Most DoD embedded real-time systems have been designed on single processor based

architectures (i.e. M68000, Z8000, and MIL-STD-1750A). Therefore, the following discussion will

focus on scheduling algorithms for single processor systems without hard deadlines.

In his book, An Introduction to Operation Systems, Harvey Deitel identifies the general ob-

jectives of a scheduling algorithm as:

" Provide fair treatment to all waiting processes (or tasks),

" Maximize CPU throughput,

" Provide predictable response,

" Reduce process scheduling overhead,

" Balance system resource utilization,

" Provide a reasonable balance between system response and utilization,

" Avoid process starvation (or indefinite postponement),

" Acknowledge process priorities, and

* Provide gracef-l degradation (10:250-251).

These objectives are equally applicable to Ada run-time systems. The detection of an Ada run-

time system's scheduling algorithm is primarily concerned with the degree to which the algorithm

satisfies the 'predictable response' objective. If a given algorithm has a predictable response which

distinguishes it from other algorithms, then the execution of a predetermined set of tasks can be

observed and analyzed to detect the algorithm used.

2-8

2.2.1 Scheduling Algorithm Characteristics. Although the successful achievement of some

objectives noted above may be very subjective, the achievement of others can be measured by

looking at certain characteristics. First, to be consistent throughout the remainder of this thesis, the

term "task' will be used in lieu of the terms 'process' or 'job'. The following scheduling characteristics

are typically measured (for a given task i) to compare algorithm performance:

" Arrival time (Ai) [the time when the task initially arrives and is ready to execute],

" Start time (Si) [the time when the task actually begins execution],

" Finish time (Fi) [the time when the task actually finishes execution],

" Service time required (C,) [the actual CPU service time required for the continuous execution

of a task without interruption],

" CPU burst time (0Ij) [the continuous burst of CPU service time required between I/O requests

or other interrupts, '(/3,) = Ci],

" CPU utilization [for an algorithm processing n tasks] (Totaltirne/ Fn= Cj).

" System throughput [Number of tasks processed per unit time] (n/Totaltime),

" Process turnaround time (F - A,),

" Process response (or completion) time (T = Fi - Si),

" Process waiting time (Wi) = T - C,),

" Penalty ratio (P = t/Ci, where "t is time in execution before task i can leave the ready list

because it will either finish or will need to wait for something "(13:17)), and

" Response ratio (R = Ci/t (13:17)).

The application of a specific scheduling algorithm to a given set of tasks should produce a set

of measurable characteristics. Although not necessarily unique for a single set of tasks, applica-

2-9

tion of the algorithm to a selected suite of task combinations may produce a set of characteristic

measurements which are unique for that algorithm.

2.2.2 Scheduling Algorithm Descriptions. Prior to identifying the requirements for a suite of

test cases to detect the scheduling algorithm used by a given Ada run-time system, the scheduling

algorithms most likely used in Ada run-time systems will be identified. As noted earlier, due

to the complexity and costly overhead associated with hard-deadline algorithms, these will not be

considered as candidates. Additionally, based on the assumption that most DoD embedded systems

are single-processor architectures, multiprocessor scheduling algorithms also will not be considered.

Thus, the focus of this research will be on simple, well-known, single-processor scheduling algorithms

such as First-Come-First-Serve (FCFS), Round-Robin (RR), Shortest-Job-First (SJF), Priority,

and Highest-Penalty-Ratio-Next (HPRN), and Multi-Level Feedback. Only those which have a

high potential of being implemented as part of an Ada run-time system will be checked for.

2.2.2.1 First-Come-First-Serve (FCFS). This scheduling algorithm is characterized

by the First-In-First-Out (FIFO) serving queue. Tasks are lined up in a ready queue as they arrive.

This is the simplest scheduling algorithm to write and understand. However, its performance is

often quite poor. The average waiting time is generally not minimal, as a shorter task may have

to wait quite some time before execution if a longer task arrives first. Additionally, the average

waiting time may vary substantially depending on the sequence of tasks awaiting execution. This

is a non-preemptive algorithm; thus, once a task is started, it will run to completion or until it is

blocked (i.e. due to an 1/O request, a delay, or a rendezvous).

While the Ada LRM specifies that each entry call queue is required to process calls in the

order of arrival (i.e. a FIFO queue) (12:Sec 9,9), there is no such requirement for scheduling task

execution. Although not the most efficient in terms of average waiting time; due to its simplicity,

this may be the algorithm of choice for some Ada compiler vendors.

2-10

2.2.2.2 Round-Robin (RR). A scheduling algorithm in which each task is allocated a

slice of execution time on the CPU is called Round-Robin (RR). In this algorithm, as tasks arrive

they are placed on a ready queue in a FIFO fashion. But, when they get to the front of the

queue, they are only permitted a limited time for execution. If they complete within that time,

they exit the queue; however, if they block for I/O or need more CPU time they are interrupted

and placed at the back of the ready queue. Thus, RR is a preemptive algorithm where the ready

queue is treated as a circular queue, and each uncompleted task has a short turn at execution each

time the scheduler cycles through the queue. A shorter task may complete during the time slice

and exit, whereas a longer task may require several trips through the queue before completion.

The performance of this algorithm depends on the designated time slice. To function efficiently,

approximately eighty percent (80%) of the cpu bursts should be shorter than the designated time

slice. If the time slice is too large, RR degenerates into FCFS because each task completes within

one time slice. And if the time slice is too small, the context switching overhead swamps the CPU

(25:166-168).

As noted earlier, with regard to task execution, the Ada LRM states:

The execution of a program that does not contain a task is defined in terms of a
sequential execution of its actions, ... These actions can be considered to be executed
by a single logical processor. Tasks are entities whose executions proceed in parallel in
the following sense. Each task can be considered to be executed by a logical processor
of its own. Different tasks (different logical processors) proceed independently, except
at points where they synchronize. (12:Sec 9,1)

Considering the requirement noted above, in order for an Ada run-time system to execute tasks

in parallel (or give the impression of that more than one processor was being used), some type

of RR scheduling algorithm would seem most appropriate on a single processor system. This is

particularly brought out by the Ada LRM statement that "parallel tasks (parallel logical processors)

may be implemented on muiticomputers, multiprocessors, or with interleaved execution on a single

2-11

physical processor' (12:Sec 9,1). Therefore, RR should have a high probability of use in Ada

run-time systems.

2.2.2.3 Shortest-Job-First (SJF). There are two versions of the SJ F algorithm, a static

version and a dynamic version. The static SJF algorithm requires some prior knowledge of a task's

projected CPU service time Ci requirement. Using this information, the static SJF algorithm sorts

a task set based on increasing Ci and executes them in that order. The static SJF algorithm would

most likely be used for (long-term) scheduling in a batch environment where task service time

requirements are known prior to execution.

On the other hand, the dynamic SJF algorithm requires no prior knowledge of C, require-

ments. This version of SJF puts new task arrivals at the front of the ready queue to execute as

soon as the currently running task is blocked. When its turn comes up, the task is permitted to run

until a block occurs for an I/O request, a rendezvous, a delay, or some other task generated reason.

After the task is blocked, but prior to placing it back on the ready queue, the scheduler projects

the next CPU burst 3,,+ requirement based on the most recent CPU burst time O, used prior to

blocking. After each cycle through the ready queue, the algorithm sorts the remaining tasks based

on their projected 13,,+ and executes the task with the shortest 3,+, first. In this manner, tasks

which are I/O intensive and only require small bursts of CPU processing are given priority over

CPU intensive tasks.

With either version of SJF, once a task is started it will run until it requests a block or until

it is finished. Thus, both the static and dynamic SJF algorithms are non-preemptive. This results

in a minimum average waiting time for a given set of tasks. However, SJF requires either prior

knowledge of a task's required service time (i.e. C,) or the additional overhead associated with

predicting the next CPU burst (i.e. I3.+,).

It's not very likely that an Ada run-time system would be using either of these versions of SJ F

for two reasons. First, there's no other requirement to provide any projection of a task's expected

2-12

Ci. And second, the overhead associated with predicting all of the tasks' 3,,+, based on their most

recent 3,, could be extremely high. But, it should be easy to detect because of the algorithm's

characteristic minimum average waiting time.

2.2.2.4 Priority. In this scheduling algorithm, each task has a priority associated with

it. When the tasks queue up awaiting execution, the tasks with the highest priority are always

placed at the head of the queue. Thus, the tasks with the highest priority are executed first.

Tasks of equal priority are scheduled using some default algorithm. The Priority algorithm is also

non-preemptive. The major problem with this algorithm is the possibility of indefinite blocking or

starvation of lower priority tasks where they don't get an opportunity to execute.

The rules of Ada dictate that some level of Priority scheduling must be used when tasks have

a PRIORITY assigned. But, still there is no requirement that any specific algorithm be used to

schedule tasks with equal priority. Thus, a Priority algorithm which degenerates to some default

algorithm should be a prime candidate for use in Ada run-time systems.

2.2.2.5 Highest-Penalty- Ratio- Nezt (HPRN). Under the category of non-preemptive

scheduling algorithms, either long tasks are given an unfair advantage under the FCFS algorithm

or short tasks are given an unfair advantage under the SJF algorithm. According to Finkel, by

calculating a 'penalty ratio' and selecting the task with the highest penalty ratio for the next

execution, the scheduling of tasks becomes 'fairer' (13:24). The penalty ratio is calculated by

dividing the response time, T, (i.e. Fi - S,) by t, where t is the time in execution before a task

can leave the ready list. According to Harvey Deitel, this amounts to assigning dynamic priorities

to the tasks based on the calculated penalty ratio (10:258). The disadvantage of this algorithm is

that it is more expensive to implement due to the required calculation of the penalty ratio for all

tasks prior to executing a task. Additionally. a short task arriving immediately after a long task

has begun execution will still have to wait to start. It's very unlikely that this algorithm is used in

Ada run-time systems because priorities are static and the overhead may be too costly.

2-13

2..2.6 Multi-Level Feedback Scheme. This algorithm employs several queues for tasks

which are awaiting execution. The algorithm is defined by the number of individual queues, the

scheduling algorithm for each queue, the criteria required for a task to move from one queue

to the next higher queue, the criteria to move a task to the next lower priority queue, and the

initial assignment criteria. Each queue has a different priority and the queue in which a task is

placed is determined by the cause of the most recent execution interrupt. Any newly arriving task

is allowed to preempt existing tasks until it has been given an amount of CPU time equivalent

to that used oy existing tasks. The multi-level feedback algorithm is an adaptive mechanism

which responds to changes in tasking requirements, but requires considerable overhead to operate

effectively. Thus, this type of algorithm is very unlikely to be implemented in Ada run-time systems

(10:259-261)(13:24-25)

2.3 Summary

This review has provided some basic scheduling algorithm information which will be used to

identify the requirements for the investigation of Ada task scheduling. Current research into real-

time scheduling requirements and the limitaions associated with using Ada for the development

of real-time systems reveal the need for changes to Ada tasking rules. With the current ambiguous

Ada tasking rules, different implementations of Ada may produce different results. It is clear from

the literature that further research into scheduling algorithms and possible changes to the Ada rules

are required to improve Ada's real-time efficiency. The current literature also reveals that some

methods are being investigated to overcome the Ada limitations mentioned. Short of developing any

new work-arounds or changing the language rules, an alternate approach might be to determine the

task scheduling algorithms used by a set of available Ada compilers, and then select the compiler

which is best suited for the job at hand. In support of this approach, the literature review provided

a discussion of scheduling algorithm characteristics. This provides the background for the possible

development of a testbed of Ada programs to detect the underlying task scheduling characteristics

2-14

exhibited by a given Ada compiler. Based on the information provided, and in order to limit

the scope of the development effort, the test suite will only check for the FCFS, RR, Static SJF,

Dynamic SJF, and Priority algorithms. The next chapter provides a discussion of the requirements

analysis used to develop the test suite of Ada programs.

2-15

III. Requirements Analysis for Ada Task Scheduling Detection

The detection of the scheduling algorithm used by a run-time system will require the mea-

surement of one or more algorithm characteristics to distinguish among the five algorithms. There

are several approaches which are used to predict algorithm performance. When the task parameters

are dynamic, queuing models are used to predict the performance of scheduling algorithms. Several

authors have used queuing theory to evaluate scheduling algorithm performance on dynamic task

sets (18, 17, 24). On the other hand, when the task parameters are static, an evaluation method

known as deterministic modeling can be used. Several authors have used flow-time analysis and

Gantt charts to predict the sequence of task execution for a given scheduling algorithm known

apriori (15, 13, 25). The scheduling methods defined in Chapter Ii can be described using the

deterministic approach, therefore the basig for the development of the Ada testbed will be the

same.

This requirements analysis will discuss the task parameters and scheduling algorithm charac-

teristics which can be used to distinguish among the five algorithms under investigation, and the

expected results for test cases which are used to model different parameter relationships.

3.1 Scheduling Algorithm Characterisfics/Parameters

In Deterministic Processor Scheduling, M.J. Gonzalez, Jr. used Gantt charts and flow-time

measurement to analyze several single-processor algorithms (15:179-181). In his book, An Operating

Systems Vade Mecum, Raphael Finkel used Gantt charts along with known task parameters to

illustrate and compare the results of applying various algorithms to a given set of tasks (13:20-

27). With respect to task scheduling analysis, a Gantt chart is a tabular representation of task

execution during a sequence of predetermined time increments. Flow-time analysis is concerned

with the sequence of, and relationship between, the start and finish times of the tasks. Since the

execution sequence for a given task set will vary depending on which scheduling algorithm is used

3-1

and how the parameters of the tasks are related, representation of the expected execution results

using a Gantt chart requires prior knowledge of one or more task parameters.

Initially, I believed that the expected Gantt chart produced by various algorithms for a given

task set could be predicted if the arrival time (Ai), service time (Ci), and priority (Pi) of the tasks

were known. Although many examples of Gantt chart analysis contain several tasks within the

given task set, algorithm detection may be possible with only two tasks in the task set. But, in

order to do it with only two tasks, (A & B), all the possible equality relationships between AA &

AB, CA & CB, and PA & PB for the two tasks had to be observed. Twenty-seven test cases cover

each combination of these parameter relationships for two tasks. A listing of the test cases, along

with the corresponding parameter relationships for the two tasks, is provided in Table 3.1.

Originally, I thought that these test cases would be sufficient to detect RR, FCFS, SJF, and

Priority. Later, I realized that there was a distinction between the results predicted for the Dynamic

SJF algorithm and the Static SJF algorithm. This distinction, along with other problems, resulted

in the need for another special test case which will be discussed later. It wasn't until after the

Ada programs which modeled these twenty-seven test cases were executed, and the results of the

execution analyzed, that I discovered these test cases could not detect a Dynamic SJF algorithm.

Thus, the term SJF will be used to refer to the Static SJF algorithm until the special test case is

presented.

The A,, Ci, and Pi task parameters were selected for use in the test cases for the following

reasons. First, if the task arrival times for two tasks are known in advance, this knowledge can be

used for detecting a FCFS algorithm. Since a FCFS algorithm executes the task with the earlier

arrival time prior to the other task, the resulting execution sequence and the start & finish times

can be predicted.

If the task service times are also known in advance, a better approximation for the expected

start and finish times is also possible. In order to more accurately predict start and finish times, the

3-2

Scheduling Algorithm Detection Test Cases

Test Case Service Time Arrival Time Priority
1 CA =CB AA=AB PA=PB
2 CA = CB AA = AB PA > PB
3 CA=CB AA=AB PA<PB
4 CA = CB AA < AB PA = PB
5 CA = CB AA < AB PA > PB
6 CA =CB AA < AB PA < PB
7 CA = CB AA > AB PA = PB
8 CA =CB AA >AB PA > PB
9 CA =CB AA > AB PA < PB
10 CA > CB AA = AB PA = PB
11 CA >CB AA = AB PA > PB
12 CA > CB AA = AB PA < PB
13 CA > CB AA < AB PA = PB
14 CA > CB AA < AB PA > PB
15 CA > CB AA < AB PA < PB
16 CA > CB AA > AB PA = PB
17 CA > CB AA > AB PA > PB
18 CA > CB AA > AB PA < PB
19 CA < CB AA = AB PA = PB
20 CA < CB AA = AB PA > PB
21 CA<CB AA = AB PA < PB
22 CA < CB AA < AB PA = PB
23 CA < CB AA < AB PA > PB
24 CA < CB AA < AB PA < PB
25 CA < CB AA > AB PA = PB
26 CA < CB AA > AB PA > PB
27 CA < CB AA > AB PA < PB

where C is the service time, A in the arrival time, and P is the priority.

Table 3.1. Algorithm Detection Parameter Relationships for Test Cases 1 thru 27

service time inequality relationships identified in Table 3.1 were converted to equality relationships.

The relationship 2CA = CB was used to obtain the CA < CB relationship, and CA = 2CR was used

to obtain the CA > CB relationship. The doubling of service times for the equality relationship

was arbitrarily selected to simplify the start and finish time predictions (and analysis). The prior

knowledge of task service times also aids in the detection of the SJF algorithm. Since a SJF

algorithm executes the task with the shorter service time prior to the other task, the resulting

execution sequence can be identified and a close approximation to start and finish times can be

predicted.

3-3

If the priorities of two tasks are known in advance, detection of the Priority algorithm should

be possible. Since a Priority algorithm executes the task with the higher priority before the other

task, the resulting execution sequence can be identified and a close approximation to the start and

finish times can be predicted.

Finally, if a RR algorithm is ised for task scheduling, the two tasks will take turns at exe-

cution. Once again, if the arrival times and service times of the two tasks are known in advance,

execution sequence and a fair approximation of start and finish times can be predicted. Although

accurate predictions for start and finish times are not possible without prior knowledge of the time

slice (TS) used by the RR algorithm, the relationships between the task start and finish times is

possible.

Even though some of the test cases were functionally equivalent to each other (just a renaming

of tasks), they were kept for purposes of cross-checking their expected re. s. I also realized that

some of the test cases could produce the same results for two or more algorithms. These test cases

were kept because the results of two such test cases may be intersected to single out which of the

algorithms under investigation is possibly being used. For example, if the results of one test case

indicates that either FCFS or SJF was used, and the results of another test case indicates that

either FCFS or Priority was used; then the intersection of these results reveals that FCFS was used.

Therefore, all of the test case were kept to maintain a more complete test suite.

Since the overall objective was to analyze the execution results of Ada programs which mod-

eled these test cases, the next step was to predict the execution results of each test case executing

under the RR, FCFS, SJF, and Priority algorithms. The prediction of expected results for the test

cases is discussed in the next section.

3-4

3.2 Predicted Execution Results for the Test Cases

The expected result of executing a given test case under a known scheduling algorithm can

be described by a characteristic set of start (SA and SB) and finish (FA and FB) times, along with

a corresponding Gantt chart. As noted earlier, a Gantt chart can be used to predict the expected

execution sequence for a set of tasks running under a given scheduling algorithm. The Gantt charts

for each of the twenty-seven test cases, executing under four scheduling algorithms, are shown in

Tables A.1 through A.30 of Appendix A. The four algorithms represented are Round Robin (RR),

First-Come-First-Serve (FCFS), Shortest-Job-First (SJF) [actually static SJF], and Priority.

Ideally, a single test case should have expected results which are unique for each scheduling

algorithm. Examination of the Gantt charts provided in Tables A.1 through A.30 of Appendix

A indicates that none of the test cases appear to be ideal in this respect. The Gantt charts are

only of limited use because they do not accurately reflect the time segments, but they do provide

some insight into which algorithms are detectable by a given test case. The supplemental flow-time

analysis will provided additional insight when presented later. The following discussion highlights

some of the observations which can be made from the Gantt charts. The predicted Gantt charts

for test cases 1, 4, 7, 10, 16, 19, 22, and 25 indicate that these test cases should be useful in

distinguishing RR from the other algorithms. The predicted Gantt charts for test cases 6, 8, 15,

17, 24, and 26 reveal two sets of execution sequences. One sequence indicates that either RR or

Priority was used for scheduling, while the other sequence reveals that either FCFS or SJF was

used. Further flow-time analysis should distinguish between RR and Priority, but not necessarily

between FCFS and SJF. All other Gantt charts contain predicted execution sequences which cannot

distinguish between any of the four algorithms.

The flow-time analysis produces the expected start and finish times for the execution of each

test case under the four algorithms. The predicted start and finish times for each of the twenty-seven

test cases are summarized in Tables 3.2, 3.3, and 3.4.

3-5

Test Parameters RR FCFS SJF Priority
Case

1 SA=O orTS SA=O orC SA=O orC SA=O or C
CA =CB SB=TS or 0 SB= C o0 SB=C or 0 SB=C or0
AA = AB FA = 2C - TS or 2C FA = C or 2C FA = C or 2C FA = C o2C
PA=PB FB=2C or2C-TS FB=2C orC F=2C orC FB=2C orC

2 SA =0 SA =0 SA =0 SA =0
CA=CB SB =C SB =C SB =C SB =C
AA = AB FA =C FA =C FA =C FA =C
PA > PB FB= 2C FB =2C FB =2C FB =2C

3 SA =C SA=C SA =C SA =C
CA =CB SB =O SB =O SB =O SB =O
AA = AB FA =2C FA =2C FA =2C FA =2C
PA < PB FB= C FB= C FB =C FB= C

4 SA =0 SA=O SA= 0 SA =0
CA = CB SB =2TS SB =C SB = C SB= C
AA < AB FA = 2C- TS FA =C FA = C FA= C
PA = PB FB =2C FB =2C FB =2C FB =2C

5 SA 0 SA =0 SA=O SA =0
CA = CB SB= C SB =C SB= C SB= C
AA < AB FA= C FA =C FA =C FA= C
PA > PB FB= 2C FB =2C FB =2C FB= 2C

6 SA 0 SA =0 SA =0 SA 0
CA =CB SB = T S SB = C SB = C SB = AB
AA < AB FA =2C FA = C FA = C FA = 2C
PA < PB FB = C + TS Fa = 2C FB =2C FB = C+ SB

7 SA = T S SA =C SA =C SA =C
CA =CB Sa=0 Sa =0 SB = SB =0
AA > AB FA =2C FA =2C FA =2C FA= 2C
PA = PB FB = 2C- TS FB= C FB= C FB =C

8 SA =TS SA =C SA =C SA =AA
CA =CB SB =0 SB =0 SB 0 SB =0
AA >AB FA = C+TS FA =2C FA =2C FA = C+ AA
PA > PB FB=2C F= C FB =C FB=2C

9 SA= C SA =C SA =C SA =C
CA=CB SB=O SB=0B 0=O S8=0
AA > AB FA =2C FA= 2C FA =2C FA= 2C
PA<PB FB=C FB=C FB=C FB=C

where C is service time, A is aurivsi time, P is priority,

S is stagt time, F is finish time, and TS is the Time Slice if R is used,

Table 3.2. Predicted Execution Results for Test Cases 1 - 9

3-6

Test Parameters RR FCFS SJF Priority
Case

- 10 SA =0 orTS SA =0 orC SA =C SA 0 orC
CA= 2 CB SB =TS or0 SB=2C or0 SB = 0 SB =2C or0
AA =AB FA =3C or3C FA 2C or3C FA=3C FA 2C or3C
PA PB F= 2C or 2C -TS FB=3C or C FB C F =3C or C

11 SA = 0 SA 0 SA =0
CA = 2CB SB =2C SB =2C SB =2C SB =2C
AA= A FA= 2C FA= 2C FA= 2C FA= 2C
PA > PB F= 3C FB 3C Fa 3C F =3C

12 SA =C SA= C SA =C SA= C
CA =2CB SB =O SB=0 SB =0 SB 0

AA =AB FA =3C FA= 3C FA= 3C FA= 3C
PA<PB FB=C FB=C FB=C F 8 =C

13 SA =0 SA = 0 SA =0 SA =0
CA = 2CB SB = TS SB =2C SB 2C SB 2C
AA < AB FA = 3C FA =2C FA= 2C FA=2C
PA_ P FB = 2C FB=3C FB= 3C FB =3C

14 SA=0 SA =0 SA=0 SA 0
CA 2CB SB =2C SB= 2C SB =2C SB =2C
AA < AB FA= 2C FA= 2C FA= 2C FA= 2C
PA > PB FB =3C FB =3C FB= 3C FB= 3C

15 SA=0 SA 0 SA 0 SA 0

CA = 2CB SB =TS SB =2C SB =2C SB = AB
AA < AB FA= 3C FA= 2C FA =2C FA = 3C
PA < PB FB = C + TS FB= 3C FB =3C FB = C+SB

16 SA = TS SA= C SA= C SA= C
CA =2CB SB=O SB 0 SB =0 SB =0
AA > AB FA =3C FA =3Cs FA= 3C FA 3C
PA =PB FB = 2C- TS F= C F= C FB= C

17 SA=TS SA =C SA=C SA =AA
CA 2CB SB = 0 =0 SB =0 So =0
AA > AB FA = 2C+TS FA=3C FA= 3C FA = 2 C+ SA

PA>PB FB=3C FB=C FB=C FB=3C

18 SA= C SA =C SA= C SA= C
CA = 2CB SB=O SB = 0=O SB =0
AA > AB FA =3C FA= 3C FA= 3C FA= 3C
PA <PB FB=C FB=C Fa=C FB=C

where C is service time, A is arrival time, P is priority,

S is start time, F is finish time, and TS is the Time Slice if RR is used,

Table 3.3. Predicted Execution Results for Test Cases 10 - 18

3-7

Test Parameters RR FCFS SJF Pnonty
Case

19 SA =0 orTS SA 0 or2C SA =0 SA=O orC
2CA CB SB = TS orO SB C orO SB = C SB = C or 0
AA AB F.4 = 2C- TS or 2C FA-C or3C FA = C FA C or 3C
PA PB FB = 3C or 3C FB = 3C or 2C FB 3C FB 3C or 2C

20 SA =O SA =O SA =0 SA =O
2 CA =CB SB = C SB = C SB =C SB = C
AA =AB FA =C FA =C FA =C FA =C
PA > PB FB"3C = B = 3C FB 3C FB = 3C

21 SA =2C SA = 2 C SA =2C SA =2C
2 CA =CB SB= 0 SB 0 SB -- 0 F = 0
AA AB FA =3C FA =3C FA =3C CA = 3C
PA < PB FB =2C FB =2C FB =2C FB = 2C

22 SA 0 SA 0 SA 0 SA =0

2CA = CB SB =TS SB =C SB =C SB =C
AA<AB FA = 2C - TS FA =C FA =C FA= C
PA= PB FB =3C FB= 3C FB =3C FB =3C

23 SA =0 SA=0 SA 0 SA 0
2 CA= CB SB =C SB =C SB =C SB= C
AA < AB FA =C FA =C FA =C FA= C
PA > PB FB =3C FB= 3C FB= 3C FB= 3C

24 SA =0 SA 0 SA 0 SA 0
2CA = CB SB = TS SB =C SB= C SB = AB

AA < AB FA =3C FA =C FA =C FA =3C
PA < PB FB = 2C+TS FB= 3C FB= 3C FB = 2C+ SB

25 SA =TS SA =2C SA 2C SA =2C
2 CA=CB SB=O SB=O S= 0

AA >AB FA =2C FA =3C FA =3C FA =3C
PA= PB FB =3C FB= 2C FB =2C FB= 2C

26 SA =TS SA =2C SA 2C SA =AA
2CA=CB Sa=0 SB=O SB=O S 8=0
AA > AB F. 4 = C + TS FA =3C FA = 3C FA = C + SA
PA > PB FB = 3C FB= 2C FB = 2C FB = 3C

27 SA = 2C SA = 2 C SA = 2C SA = 2C
2 CA=CB SB=O SB=0 S=0 SB=O
AA >AB FA =3C FA =3C FA = 3C FA =3C
PA < PB FB= 2C FB =2C FB = 2C FB =2C

where C is service time, A is arrival time, P is priority,

S is start time, F is finish time, and TS is the Time Slice if RR is used,

Table 3.4. Predicted Execution Results for Test Cases 19 - 27

3-8

Combining a flow-time analysis for each test case to the Gantt chart observations improved

the ability to distinguish between the four algorithms, but the distinction was still not as clear

as des.,ed. Still I felt that with twenty-seven test cases, it was possible to identify test case

-ombinations which would differentiate between the algorithms. So, I summarized the expected

results by grouping the task parameters together, and ordering the results by increasing start

times for task A. Through this summary, some distinction between the scheduling algorithms was

revealed. The summary which illustrates this distinction is provided in Table 3.5.

Parameters Test Cases that Reveal the Algorithms
SA SB FA FB RR FCFS SJF Priority
0 TS 2C-TS 2C 1,4

3C 19,22
3C 2C 10,13

C + TS 15
2C + TS 24

2C C + TS 6
AB 2C C + SB 6

3C C + SB 15
2C + SB 24

C C 2C 2,5 1,2,4,5,6 1,2,4,5,6 1,2,4,5
3C 20,23 19,20,22,23,24 19,20,22,23,24 19,20,22,23

2C 2C 3C 11,14 11,10,13,14,15 11,13,14,15 11,10,13,14
TS 0 C+TS 2C 8

3C 26
2C 2C - TS 1,7

3C 19,25
2C + TS 3C 17

3C 2C - TS 10,16
AA 0 C + SA 2C 8

3C 26
2C + SA 3C 17

C 0 2C C 3,9 1,3,7,8,9 1,3,7,8,9 1,3,7,9
X C 12,18 10,12,16,17,18 10,12,16,17,18 11,10,13,14

2C 0 3C 2C 21,27 19,21,25,26,27 21,25,26,27 19,21,25,27
NOTE: the numbers in the algorithm columns represent individual test cases.

Table 3.5. Scheduling Algorithm Detection Summary

The table shows that there are several groupings of test case results which can be used to

distinguish between the algorithms. The test cases listed at the intersection of each row and column,

in the bottom right of the table, represent those test cases which will produce the set of expected

3-9

results shown to the left when executed by the algorithm identified for that column. There are

two possibilities of expected results for test cases 1, 10, and 19 under the RR, FCFS, and Priority

columns because of equal arrival times for the tasks. Depending on whether task A or B is selected

for execution first, the expected results would fall into either the top portion of the table (when

task A executes first) or the bottom (when task B executes first). This is also the reason that test

case I occurs twice under the SJF column. In spite of this duplication, there is enough distinction

between the expected results to distinguish between which algorithm is used. After running all

test cases under an unknown scheduling algorithm, if the algorithm is one of the four shown in the

table, the actual results should match closely to the results in one of the columns. Test cases 1, 4.

6, 7, 8, 10, 13, 15, 16, 19, 22, and 24 can distinguish RR from the other algorithms. Test cases 6, 8,

15, 17, and 24 can distinguish Priority from the other algorithms. However, a problem arises when

trying to distinguish between FCFS and SJF. Depending on whether task A or B is executed first

in test cases 10 and 19, FCFS and SJF may produce identical results. If an algorithm executes

task A first for test case 10 and task B first for test case 19, then the results would distinguish

FCFS from SJF. Otherwise, there is no distinction. Therefore, an additional test case is needed to

explicitly distinguish between the FCFS and SJF algorithms.

As noted earlier, I realized that these test cases could only detect the static SJF algorithm,

not the dynamic one. Since Ada tasks can be dynamically created, it is not very feasible that

an Ada run-time system would have the prior knowledge of task service times before execution.

Though it is still unlikely that an Ada run-time system would keep track of individual task CPU

burst times to use for task scheduling, I decided to add a test case to detect dynamic SJ F so both

forms of SJF were included.

This final test case requires six tasks: two with very short CPU burst times, two with medium

burst times, and two with long CPU burst times. All tasks will be assigned equal priorities and

assumed to have equal arrival times. The task parameter relationships for this test case are provided

3-10

Test Case 28
Task CPU Burst Arrival Priority
ID Required Time
A A =C 0 P
B B = C/2 0 P
C 3c = C/100 0 P
D 3D-=C 0 P

E 13E = C/2 0 P
F F = C/1100 0 P

where C is some large CPU burst requirement,

and /A' is CPU burst requirement for Task.

Table 3.6. Task Parameter Relationships for Test Case 28

in Table 3.6.

The Gantt chart, as well as subsequent start and finish times, for this test case depend on the

order in which the tasks are started. The initial order is not important for algorithm detection, but

the relationships between start and finish times will distinguish between RR, FCFS, and dynamic

SJF. Priority will not be considered in this test case because it is already addressed in the earlier

test cases and no additional information would be gained by having unequal task priorities in this

test case. Given that the CPU burst request occurs at least three times during task execution, and

the initial order of execution is F, A, E, D, C, and B; Tables 3.7 through 3.9 show the Gantt

charts for FCFS, RR, and SJF respectively.

FCFS Gantt Chart for Test Case 28

Time f 0-1 2-201 202-301 302-501 502-503 504-603
TaskI F A E D C B

Time 604-605 606-805 806-905 906-1105 1106-1107 1108-1207
Task[F A E D C B

Time [1208-1209 1210-1409 1410-1509 1510-1709 1710-1809 1810-181
Task F A E D C B

where Time is expressed in TS units, and 2TS = C/lO0orTS C/200.

Table 3.7. Predicted FCFS Gantt Chart for Test Case 28

The FCFS algorithm will service the jobs in the order they are queued in the ready queue

(e.g. F, A, E, D, C, B) and the jobs will complete in that same order. The start and finish times

3-11

___ _ RR Gantt Chart for Test Case 28 J

Time 0 1_ 2 3 4 5 6 7 1 8 1 9 0 _

Task F A E D C B FIA EI D C 3 B3

Time 12 13 14 15 16 11718 19 20 121 22 23
Task F A jE D C B F A E jD C J B
Time 24 25 26 27 28 29 30 31 32 33 34 35
Task F A E D C B F A E D C B

Time 36 37 38 39 ... 11212 1213 1214112151
Task A E DI C A E D C

Time 1216 1217 ."'" 1810 1811
Task F A FIA

where Time is expressed in TS units, and 2TS - C/100orTS = C/200.

Table 3.8. Predicted RR Gantt Chart for Test Case 28

Dynamic SJF Gantt Chart for Test Case 28 771

Time 0-1 2-201 202-301 302-501 502-503 504-603
Task] F A E D C B I

Time [604-605 606-607 608-707 708-807 808-1007 1008-1207
Task F C E B A D

Time [1208-1209 1210-1211 1212-1311 1312-1411 1412-1611 1612-1811

Task F C E B A D
where Time iL expressed in TS units, and 2TS = C/IO0orTS = C/200.

Table 3.9. Predicted SJF Gantt Chart for Test Case 28

3-12

for FCFS will be staggered by the amount of CPU burst time required by each preceding task. The

RR algorithm will service the jobs in the order they are queued, but it will only permit a small slice

of the CPU each time through the queue. Thus, the start times of the RR algorithm will have each

task staggered by a time slice. The finish times of the tasks under RR will be grouped by burst

requirements, with those tasks requiring the smaller bursts finishing first. The tasks in each group

will be staggered by the number of time slices needed to finish their last burst requirement (i.e.(CPI_

burst time / time slice) * number of remaining tasks). Finally, the Dynamic SJF algorithm will

have start times which are equivalent to FCFS (it has to run the tasks through their first CPU

burst). The finish times under Dynamic S.JF will be grouped similar to RR, but with the tasks

within each group staggered by the preceding task's burst requirement. These expected start and

finish times are summarized in Tables 3.10 through 3.12.

After closely looking at these predicted results, the single test case described above should

produce a distinct set of results when run by different scheduling algorithms. Thus, this test case

may be the only one required to distinguish between the four scheduling algorithms of interest. I

was still curious as to whether the initial twenty-seven test cases could be used to detect the RR,

FCFS, and Priority algorithms. I was also curious as to how well I could model the test cases with

Ada programs. In particular, I wanted to see whether I could model the equal arrival times for two

Ada tasks. Finally, I wanted to see how closely the actual execution results would compare with

those predicted using the Gantt charts and flow-time analysis. So, I decided to use all twenty-eight

test cases, model them using Ada programs, compile the programs, and compare the actual test

case results with those which are predicted here.

3-13

Predicted Test Case 28 Start and Finish Times
FCFS Algorithm

Parameter Predicted Result
SF 0
SA C/100

SE C+C/100
SD C + C/100 + C/2
Sc 2C + C/100 + C/2
sB 2C + C/50 + C/2
FF (3(L - 1)/50)C + C/100

FA (3(L - 1)/50)C + C + C/100
FE (3(L - 1)/50)C + C + C/2 + C/100
FD (3(L- 1)/50)C+2C+C/2+C/100
Fc (3(L - 1)/50)C + 2C + C/2 + C/50
FB (3(L - 1)/50)C + 3C + C/50

where L is the number of bursts required

Table 3.10. Test Case 28 FCFS Prediction Summary

Predicted Test Case 28 Start and Finish Times
RR Algorithm

Parameter Predicted Result

SF 0
SA TS
S8 2TS
SD I3TS
Sc 4TS
SR 5TS
FF 30TS + ITS
FA 36TS + (# /TS) * n)
FE 36TS + (13E/TS) * n)
FD 36TS + (,OD/TS) * n)
FC 30TS + 5TS
Fa 36TS + (OB /TS) * n)

where TS is assumed equal to C/200

and n is the number of remaining tuks

Table 3.11. Test Case 28 RR Prediction Summary

3-14

Predicted Test Case 28 Start and Finish Times
Dynamic SJF Algorithm

Parameter Predicted Result
SF 0
SA C/100
SE C + C/100
SD C+C/I00+C/2
Sc 2C + C/100 + C/2
SB 2C + C/50 + C/2
FF (3(L - 1)/50)C + C/100
FA (3(L - 1)/50)C + C/50
FE (3(L - 1)/50)C + C/50 + C/2
FD (3(L - 1)/50)C + C/50 + C
Fc (3(L - 1)/50)C + C/50 + 2C

FB (3(L - 1)/50)C + C/50 + 3C
where L is the number of bursts required

Table 3.12. Test Case 28 Dynamic SJF Prediction Summary

3-15

IV. Design and Development of Ada Task Schedule Detection Test Cases

The twenty-eight test cases identified for detecting task scheduling algorithms were described

in Chapter III. A different combination of scheduling parameters was identified for each test case.

Some of the parameters need to be controlled prior to execution, while other parameters need to be

measured after execution. This chapter identifies the specific constructs used in the Ada programs

to control and measure the reqiired scheduling parameters. The Ada programs that implement

the test cases are provided in Volume 2 of this thesis.

4.1 Ada Constructs Used for /mplementat:on

The parameters of a given task, a, requiring control prior to execution are the arrival time

(Ai), the service time (C,), and the priority (P). The parameters which will need to be measured

during task execution are the start (Si) and finish times (F). The completion time (T) parameter

will also be used, but can be derived from the start and finish times (i.e. T = F - Si).

My approach for test cases 1 - 27 was to have two tasks available for uninterrupted execution.

Each task is distinguished by its name (i.e. task A or B) and its associated controlled parameters

(i.e. AA, AB, CA, CB, PA, and PB). The measured parameters (i.e. SA, SB, FA, and FB) are

recorded during execution, and derived parameters (i.e. TA and TB) are calculated after execution.

Finally, the measured and derived parameters are analyzed manually to see if they reveal the

scheduling algorithm used during execution.

For test case 28, I used six tasks instead of two, I did not control task arrival times, and I

did not use uninterrupted execution. In test case 28, I wanted to see how the run-time system

scheduled tasks which contained fixed CPU bursts (i.e. OA, 13, 13c, l3D, 3 E, and OIF) between

run-time system interrupts (delays). In this case, the relationship between task arrivals was not as

important as the relationships between task starting times and finish times.

4-1

The following discussion addresses the control of each task's arrival time, service time, CPU

burst requirement, and priority. The section closes with a discussion on how an Ada task's start

and finish times are measured. In each of the following sections, the Ada constructs used for test

cases 1 -27 will be discussed first and then, if different, test case 28 will be discussed.

4.1.1 Task Arrival Times. The task arrival time proved to be the most difficult parameter

to control. I tried several approaches to controlling task arrival times, but none of the approaches

could generate equal arrival times precisely. The three approaches considered for controlling arrival

times were (1) using a task type specification, (2) using individual single task specifications &

bodies, and (3) using a 'busy wait' spin test. These approaches are discussed in the following

paragraphs.

Initially, I thought that it was possible to control task arrival times. The LRM states that:

A task body defines the execution of any task that is designated by a task object of
the corresponding task type. The initial part of this execution is called the activation
of the task object, and also that of the designated task; it consists of the elaboration
of the declarative part, if any, of the task body. The execution of different tasks, in
particular their activation, proceeds in parallel. (12:Sec 9,5)

With regard to task activation, the LRM states that "if an object declaration that declares a

task object occurs immediately within a declarative part, then the activation of the task object

starts after the elaboration of the declarative part (that is, after passing the reserved word begin

following the declarative part" (12:Sec 9,5). This implies that equal arrival times should be possible

by defining a task type, and declaring several task objects of that type within the declarative portion

of the parent program or procedure. Then, when the procedure's begin statement is reached, the

task objects should be activated in parallel (i.e. they would have equal arrival times). Additionally,

since activation starts after any initialization for the object created by an allocator, unequal arrival

times (i.e. AA < AB) could be achieved by using two separate allocations with a delay between

them. But, there are two problems associated with this approach.

4-2

The first problem is that two things cannot be done at the same time on a single-processor

system. Therefore, tasks cannot be activated simultaneously as the LRM indicates, the run-time

system can only activate them sequentially. The second problem is associated with the measurement

of the S, and F, parameters. When several task objects are derived from the same task type

specification, unique Si and F parameters for each task object cannot be maintained. If start and

finish time variables are declared in the task type specification, each task could record its own S,

and F,, but these parameters would be lost at the termination of the tasks. Any I/O to permanently

record Si and F during task execution would interrupt the task, interfering with the detection of

the scheduling algorithm. If start and finish time variables are declared in the parent program of

the tasks, only the Si and Fi parameters of one task would be recorded (one tasks would overwrite

the parameters of the other task). This makes it impossible to record unique Si and F parameters

for more than one task.

Another possible approach to controlling task arrival times is to define specifications and bod-

ies for each task. With this approach, there is no problem with Si and F parameter measurements.

A pair of start and finish time variables for each task can be declared in the parent procedure. Since

declarations made in the parent procedure are visible to the tasks also declared in that procedure,

each task can record its own Si and F parameters. By creating each task object separately using

allocators, this approach can also handle the unequal arrival time scenario. However, this approach

has the same problem with equal arrival times as the other approach. Even though task types are

not used, the run-time system still cannot activate the tasks simultaneously.

The last approach is to use a 'busy wait', and allow the parent procedure to 'start' task

execution by setting a flag. With this approach, tasks are defined and declared using individual

task specifications and bodies. Then, immediately upon activation, each task goes into a 'busy

wait loop. During the 'busy wait' loop, each task checks a flag and executes a delay statement if

the flag hasn't been set. A state diagram, which shows the possible states of an Ada task, helps

4-3

to see what really happens when the delay is used. In his book, Software Engineering with Ada,

Booch describes the six possible states of an Ada task and provides a state diagram. This diagram

is shown in Figure 4.1.1 (3:282).

In reference to the state diagram, initial task activation moves the task out of the elaborated

state and into the running state. The delay causes a task to be blocked, and the next task in the

ready queue begins execution. This implies that the 'busy wait' loop permits two tasks to swap first

place position in the ready queue whenever the delay duration expires. I used duration'small for

the delay. This value is machine dependent, but it is so small that it should not produce measurably

different arrival times. When the parent program sets the flag, the task at the front of the ready

queue will drop out of the 'busy wait' and begin execution. The other task will move to the front

of the ready queue as soon as its delay is completed. Since either task could be at the front of the

ready queue when the parent program sets the flag, each task has a equal opportunity of starting.

This was as close to equal arrival times that I could come up with. This may produce unexpected

results for those test cases which have unequal priorities or service times, and are expecting equal

arrival times. For example, the expected results for a Priority algorithm would be that the task

with the higher priority is start first; but this may not occur if the task with the higher priority is

not at the front of the ready queue. But, then again, the 'right' task may be at the front of the

ready queue and the actual results would correctly match those which were predicted. Analysis of

actual execution results will be needed to evaluate whether this approach adequately models equal

arrival times.

As noted earlier, I did not have to control arrival times for test case 28. I still used the 'busy

wait' loop to insure that all tasks had an equal opportunity of being selected for execution. But

in this case, instead of two tasks exchanging first place position in the ready queue, there were six

tasks. Of the six tasks, two required short CPU bursts, two required medium CPU bursts, and two

required long CPU bursts. Thus, after the flag was set, there was always at least one task of each

4-4

Elaborated

Figure 4. 1. Ada Task States (3:282)

4-5

burst type in the ready queue awaiting execution.

4.1.2 Task Service Time. The task service time corresponds to the the total time which

the task spends in the running state. The computation representing this service time was the

calculation of the area of a circle, where the radius of the circle was the iteration index of the loop.

The length of the service time was controlled by the number of iterations. Prior to running the

test cases, CA and CB could be measured by running a program containing a single task. With

only a single task, the run-time system executes the task until it has finished all loop iterations.

By measuring S, immediately before entering the loop and measuring Fi immediately after exiting

the loop, C is computed by subtracting F from S,. The relationship CA = CB is achieved by

having the same size loop in each task. The relationship CA = 2CB is achieved by having task A's

loop iterate twice as many times as B's loop. And 2 CA = CB is achieved by having task A's loop

iterate half as many times as task B's loop.

I encountered two small problems with this approach. Initially, I used integer values (ranging

from 1 to 700,000) for my loop iterations, which worked fine on the mini-computer based Ada

compilers. But, on the PC-based compilers, the programs would not execute because of the machine

dependent constraints imposed on integer object ranges. I declared a 'SERVICE-TIME' type with

the appropriate range to alleviate this first problem. The next problem was more of an inconvenience

than a problem. I found that executing 700,000 iterations produced an acceptable service time on

the mini computer systems, but produced too long of a service time on a PC. On the other hand,

executing only 100,000 iterations on the mini computer systems did not produce a measurable

service time, but produced a acceptable service time on a PC. Therefore, I had to use two separate

values as my upper limit for the range of the 'SERVICE-TIME' type depending on the computer

I ran the test cases on.

4.1.3 CPU Burst Requirements. In order to model CPU burst requirements, I needed to

perform a continuous interval of CPU processing, then generate a task interrupt request where the

4-6

task would be blocked and another task could be permitted to execute. As noted above, a continuous

interval of processing can be modeled using a loop containing some 'busy' computation. For the

interrupt, I used a delay statement. According to the LRM, "the execution of a delay statement

evaluates the simple expression, and suspends further execution of the task that executes the delay

statement, for at least the duration specified by the resulting value" (12:Sec 9,10). Placing a delay

statement immediately after the busy loop, and using Duration'small for the simple expression,

adequately modeled the CPU burst requirements. Placing this 'busy' loop within another loop

of just a few iterations produces a task with several CPU bursts. In order to detect whether a

Dynamic SJF algorithm is being used for task scheduling, at least two CPU bursts are needed.

The duration of the burst corresponds to the time required for the CPU to process the 'busy'

loop. For test case 28, 1 defined a 'BURST-SIZE' type equivalent to the 'SERVICE-TIME' type for

the loop iteration range. Then, I declared the loop iteration limit for the large, medium, and small

bursts. A 'large burst' loop iterates to the largest number in the range and produces a CPU burst

requirement which is equivalent to a single task's service time, measured above as C,. A 'medium

burst' loop iterates one half the number of times of the 'large burst' loop producing a CPU burst

requirement only one half the size of the large CPU burst. Finally, a 'small burst' loop iterates

only 1/100th the number of times of the large burst loop producing a CPU burst requirement of

only 1/100th the size of the large CPU burst.

4.1.4 Task Priorities. The easiest scheduling parameter to implement with Ada was the

priority parameter. The Ada LRM states that " a priority is associated with a task if a pragma

PRIORITY (static ezpression) statement appears in the corresponding task specification" (12:Sec

9,16). The only precaution I had to take was to insure that the parent procedure had a higher

priority than any of its tasks so it could set the flag needed to control arrival times. Thus, I

assigned the parent procedure the highest priority. When the relationship PA = PB was required,

I assigned both tasks a priority of one less than the parent task. When the relationship PA < PB

4-7

was required, I assigned task A a priority which was two less than the parent task and B one less

than the parent task. The relationship PA > PB is clearly the opposite of the assignments noted

above.

I did not use any task priorities for test case 28, but I did assign the parent task the highest

possible priority. As discussed earlier, test cases 6, 8, 15, 17, 24, and 26 were developed to distinguish

a Priority algorithm. Therefore, it was not necessary to include additional permutations of test

case 28 with different combinations of task priorities.

4.1.5 Measurement of Start and Finish Times. In the prcdefined CALENDAR package,

DAY-DURATION is defined as a subtype of the predefined fixed point type DURATION. Ad-

ditionally, CLOCK is defined as a function which returns the current value of TIME whenever

it is called, and SECONDS is defined as a function that accepts the current TIME and returns

DAY-DURATION. Thus, the start time and finish time of a task (measured in seconds) can be

obtained from the run-time system using a combination of these function calls. Assignment of the

time to either Si or Fi is made by invoking the function CALENDAR.SECONDS which, in turn,

invokes the function CALENDAR.CLOCK. These CALENDAR functions are used in all 28 test

cases to record the start and finish times of the tasks.

4.2 Overall Parent Program Structure

For each test case I used a 'main' procedure distinguished by a name which identified which

test case was being modeled. Within the 'main' procedure of each test case there is a DETECT

procedure which contains the required tasks. The 'main' procedure program body simply invokes

the DETECT procedure, then outputs the start and finish time parameters (i.e. SA, SB, FA, and

FB) after the DETECT procedure is completed. The DETECT procedure is used to prevent the

main procedure from interfering with task execution. After invoking the 'DETECT' procedure, the

'main' procedure is blocked until the 'DETECT' procedure has finished. Thus, the 'main' procedure

4-8

(1) starts the DETECT procedure, (2) is blocked during task execution and does not interfere with

the run-time systems ability to schedule tasks, and (3) records the measured parameters prior to

program completion.

The 'DETECT' procedure contains the declarations of parameter object types, flags, and

task specifications and bodies. Most of the control, and all recording of task parameters, occurs

within the task bodies. The only function the DETECT procedure performs is setting the flag(s)

to control arrival times of the tasks. After setting the flag(s), the DETECT procedure is blocked

until its tasks complete.

Within the task bodies, the four functions described above are sequentially performed. First,

the task waits at the 'busy wait' loop for the flag to be set. After the flag is set, the task records

its start time using the CALENDAR functions, SECONDS and CLOCK. Next, either the 'service

time' loop or the 'CPU burst' loop is executed depending on whether the task is modeling one of

test cases 1 - 27, or test case 28. Finally, the finish time is recorded.

4-9

V. Execution Results for Ada Task Scheduling Detection

This chapter presents the results of compiling the Ada test case programs under several Ada

compilers, then executing the programs. Each compiler has its own run-time system associated

with it. The goal is to detect the task scheduling algorithm which is used by each Ada run-time

system and validate the test cases. The compilers used were:

" the Alsys PC AT Ada Compiler, Version 3.2;

" the VAX Ada Compiler, Version 1.0;

" the Meridian AdaVantage Compiler, Version 2.1;

" the Elxsi/Verdix Ada Compiler, Version 5.4; and

" the Encore/Verdix Concurrent Ada Compiler, Version 5.5

Based on their reference manuals, I knew the scheduling algorithms used in the first three compilers

and could use these to validate my test cases. I ran the test case programs on the other two compilers

to further experiment with Ada task scheduling algorithm detection. Although the analysis of the

execution results for a single test case does not provide conclusive evidence of which scheduling

algorithm was used by the Ada run-time system, the corp -.ate analysis of all test case results does

reveal the characteristics of the algorithm used by the Ada run-time system. The analyses of the

results for each Ada compiler are provided in the following sections.

5 1 Alsys PC AT Ada Compiler

I used the Alsys PC AT (v3.2) Compiler because it provided the capability of selecting a

task scheduling scheme without having to recompile. According to the Alsys PC AT Ada Compiler

(v3.2) User's Guide, setting the 'SLICE' parameter to a value greater than zero permits control

of the frequency in which the task scheduler is invoked. Thus, setting the Bind/Run-time option

5-1

'SLICE' to (50ms) causes the run-time system to use a RR algorithm with a time slice of 50ms.

When the Bind/Run-time 'SLICE' option is set to zero or a negative number, the task scheduler

is invoked only at explicit synchronization points (2:48). Thus, a FCFS algorithm is used by the

run-time system when the 'SLICE' option is set to zero. The analysis of the results obtained should

determine whether the test cases reflect the chosen scheduling method. First, the results of running

the test cases with a zero 'SLICE' setting (i.e. FCFS algorithm) are discussed, then the results of

running with a 50ms 'SLICE' setting (i.e. RR algorithm) are discussed.

5.1.1 Results with SLICE Option Set to Zero. The results of compiling test cases 1 through

27 using the Alsys PC AT Ada Compiler (v3.2) and executing these compiled programs on a Zenith

Z-248 computer system using a Oms 'SLICE' setting are provided in Tables B.1 through B.3 of

Appendix B. The following analysis is provided for these results.

Test Cases I & 10 results do not reveal a clear distinction between FCFS, SJF, or Priority.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B

starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs

to completion before task B is allowed to finish. This could occur with these test cases because of

the inability to accurately model equal arrival times in Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,

& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

used.

Test Case 4, 13, 22 results do not match any predicted results for the test cases. Task A

arrives first and starts, but is preempted by Task B and blocked until task B is finished. This could

occur if completion of a 'DELAY' causes the currently running task to be interrupted and swapped

out. Actual algorithm could be Preemptive FCFS.

5-2

Test Case 5, 9, 14, 18, 23, F 27 results do not differentiate between any of the algorithms.

Test Case 6, 8, 15, 17, 24, &' 26 results do not distinguish between RR or Priority algorithms.

This could be caused by the arrival time modeling used.

Test Case 7, 16, F 25 results produced the same problem discussed above for test cases 4,

13. 22; but with opposite task execution order. Actual algorithm could be Preemptive FCFS.

Test Case 19 results do not distinguish betweer FCFS or Priority algorithms.

If the completion of a delay is one of the evnlicit synchronization points where the task

scheduler is invoked, then the results seem to indicate that a Preemptive FCFS algorithm is used.

This treatment of the delay statement inhibits the capability to model the desired task arrival times

using the delay and emphasizes the need for an additional test case. Since there is no conclusive

evidence that any of the designated scheduling algorithms is being used, these test cases cannot be

used reliably on this compiler.

Since the analysis of the results of test cases 1 - 27 did not clearly reveal which algorithm was

used, I ran test case 28 to see if it could detect the FCFS algorithm. The results of compiling test

case 28 using the Alsys PC AT Ada (v3.2) Compiler and executing it on the Zenith Z-248 computer

system after setting the 'SLICE' option to 0 are provided in Tables B.4 through B.6 of Appendix

B. I complied the test case once, but executed it three times to produce three sets of results.

The start times for these results are clearly separated by the corresponding time it would

take for the preceding task to complete a CPU burst. This would imply that either SJF or FCFS is

used. But, since the completion order is the same as the starting order and the separation of finish

times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,

the execution sequence and the relationships of the start and finish times confirm that the Alsys

PC AT Ada (v3.2) Compiler uses a FCFS algorithm to schedule tasks when the 'SLICE' parameter

is set to zero. This also validates that this test case can be used for FCFS algorithm detection.

5-3

5.1.2 Results with SLICE Option Set to 50 ins. The results of compiling test cases I through

27 using the Alsys PC AT Ada Compiler (v3.2) and executing these compiled programs on a Zenith

Z-248 computer system using a 50ms 'SLICE' setting are provided in Tables B.7 through B.9

of Appendix B. Throughout these results, the actual time slice appears to be greater than the

.05 seconds which was selected under the run-time option. This most likely is attributable to the

required context switching. Thus, I assumed that a .1lsec difference between task start times was

due to a time slice expiration, and a .05sec difference was due to the busy wait delay used to model

task arrival times. Based on these assumptions, the following analysis is provided for the results

which are shown in Tables B.7 through B.9 of Appendix B.

Test Case 1, 7, 10, 16, 19, & 25 results reveal the RR algorithm was used.

Test Caze 2, 11, & 20 results do not distinguish between RR or Priority algorithms. This is

due to Task B unexpectedly starting before task A. This could be caused by task B being in the

Ready queue while task A is blocked due to the busy wait delay, which is related to modeling task

arrival times.

Test Case 3, 12, & 21 results indicate either RR or Priority as noted above, but with the

tasks swapped around.

Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 6, 15, & 24 results reveal the RR algorithm. The distinction between Priority is

made because the start time of task B is greater than that which would be encountered with a

Priority algorithm.

Test Case 8, 17, & 26 results reveal the RR algorithm. The distinction between Priority is

made because the start time of task A is greater than that which would be encountered with a

Priority algorithm.

Test Case 4, 13, & 22 results reveal the RR algorithm was used. But instead of task B

starting after a time slice, it seems as though task B starts immediately after the busy wait. This

5-4

results in task A not finishing before task B. It could be that task A is in the Ready queue and

begins running; then when task B is finished with the busy wait, it preempts task A and runs a full

time slice before task A has a chance to complete a full time slice. Thus, after task B is finished,

task A still has some processing to complete. It definitely can't be FCFS, SJF or Priority because

the start time for task B is not equal to 2C or 0.

Although the results of some test cases did not reveal RR, this was expected and identified in

chapter III. The majority of the test cases reveal that the RR algorithm was used. This confirms

that the Alsys PC AT Ada (v3.2) Compiler does use a RR algorithm when the 'Time Slice' option

is set to a number greater than zero. And this validates that these test cases can detect when an

Ada compiler uses a RR algorithm for task scheduling.

Although the results of the first twenty-seven test cases revealed the RR algorithm, I ran test

case 28 to see if it could also reveal the correct algorithm. The results of compiling test case 28

using the Alsys PC AT Ada (v3.2) Compiler and executing it on the Zenith Z-248 computer system

after setting the 'SLICE' option to 50rna are provided in Tables B.10 through B.12 of Appendix

B. These results represent the same program compiled once, then executed three times. Analysis

of these results revealed the following information.

The start times for these results are separated by corresponding time required for a time

slice and the associated context switching. If either FCFS or SJF were being used, the difference

between task start times would be much larger. Additionally, the reordering of the finish time

sequence from that of the start time sequence clearly rules out a FCFS algorithm. The finish times

of tasks A & D, tasks B & E, and tasks C & F are separately grouped in the order of shortest

to largest CPU bursts. This reordering indicates that either SJF or RR was used. But, the close

proximity of the task finish times within each group clearly distinguish this as RR, and not SJ F.

The close proximity of the task finish times within each group represent the completion of one final

time slice. If a SJF algorithm were used, the difference between task finish times within each group

5-5

would correspond to the time required for a final small, medium, or large CPU burst. Thus, the

relationships between the start times and finish times, as well as the execution order, clearly reveal

that a RR algorithm was used. This also validates that this test case can be used for RR algorithm

detection

5.2 VAX Ada Compler

I used the VAX Ada (v1.0) Compiler because it provided a 'pragma TIME-SLICE (static

expression)' statement which is used to alter the sequence of task scheduling. Although this pragma

statement is not available on all Ada compilers, it was easily inserted to provide results on an

additional compiler with a known scheduling algorithm. According to the VAX Ada Language

Reference Manual,

The effect of enabling round-robin scheduling with pragma TIME.SLICE is defined
by the following rules:

" The value applies to the scheduling of every task in the program.

* As long as an executing task is not preempted from the processor by a task of
higher priority and does not become suspended, that task will execute for at most
the number of seconds (approximate elapsed time) specified by the pragma. Then,
if other tasks of the same priority are eligible for execution, the executing task will
stop executing, and the task that has been waiting the longest will be selected for
execution (11:Sec 9,22).

When the pragma TIME-SLICE is not used (or when the static expression is set to zero), the

VAX Ada Language Reference Manual indicates that "a task is executed either until it becomes

suspended or until a task of higher priority becomes eligible for execution" and "tasks of the same

priority are executed in first-in first-out order (by default)" (11:Sec 9,21). Thus, when the test

cases are run with the 'pragma TIME-SLICE (0.05)' statement, the run-time system should use a

RR algorithm with a .05sec time slice to schedule tasks for execution. And '--en the test cases

are run without the 'pragma TIME.SLICE ()' statement, the run-time syitem should use a FCFS

algorithm when task priorities are equal and a Priority algorithm when the priorities are different.

5-6

5.2.1 Results without the 'Pragma TIMLESLICE (' Statement. The results of compiling

test cases I through 27 using the VAX Adt Compiler (vl.0) and executing these compiled pro-

grams on a VAX 8600 computer system without using the 'pragma TIME-SLICE ()' statement are

provided in Tables B.13 through B.15 of Appendix B. The following analysis is provided for these

results.

Test Cases 1, 4, 7, 13, 16, 19, 22, & 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B

starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs

to completion before task B is allowed to finish. This could occur with these test cases because of

the inability to accurately model equal arrival times in Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,

& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

used.

Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 6, 8, 15, 17, 24, & 26 results do not distinguish between RR or Priority algorithms.

This could be caused by the arrival time modeling used.

Test Case 10 results do not distinguish between FCFS or Priority algorithms.

Several of the test cases reveal that a Priority algorithm scheme is used when task priorities

are different. But, the FCFS algorithm is not clearly revealed when task priorities are equal. Once

again, the treatment of the delay statement inhibits the capability to accurately model the task

arrival times using a delay, and emphasizes the need for an additional test case.

Since the analysis of the results for test cases 1 - 27 did not clearly reveal which algorithm

5-7

was used, I ran test case 28 to see if it could detect the FCFS algorithm. The results of compiling

test case 28 using the VAX Ada (vl.0) Compiler and executing it on a VAX 8600 computer system

without using the 'pragma TIME-SLICE ()' statement are provided in Tables B.16 through B.18

of Appendix B. I complied the test case once, but executed it three times to produce three sets of

results.

The start times for these results are clearly separated by the corresponding time it would

take for the preceding task to complete a CPU burst. This would imply that either SJF or FCFS is

used. But, since the completion order is the same as the starting order and the separation of finish

times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,

the execution sequence and the relationships of the start and finish times confirm that the VAX

Ada (vl.0) Compiler uses a FCFS algorithm to schedule tasks when the 'pragma TIME-SLICE 13'

is not used. This also validates that this test case can be used for FCFS algorithm detection.

5.2.2 Results with the 'Pragma TIME-SLICE (0.05)' Statement. The results of compiling

test cases 1 through 27 using the VAX Ada Compiler (vl.0) and executing these compiled programs

on a VAX 8600 computer system while using the 'pragma TIME-SLICE (0.05)' statement are

provided in Tables B. 19 through B.21 of Appendix B. The following analysis is provided for these

results.

Test Case 1, 4, 7, 10, 13, 16, 19, 22, J 25 results reveal the RR algorithm was used.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B

starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs

to completion before task B is allowed to finish. This could occur with these test cases because of

the inability to accurately model equal arrival times in Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,

& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

5-8

used.

Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 6, 8, 15, 17, 24, & 26 results reveal the Priority algorithm was used.

These results reveal that a RR scheduling algorithm is used. The test case results that

indicate a Priority algorithm was used reveal the proper handling of tasks with unequal priorities.

These results are consistent with what the manual says about task scheduling when the 'pragma

TIME-SLICE (0.05)' statement is used with the VAX Ada (vl.0) Compiler.

Although the first twenty-seven test cases revealed the RR algorithm, I ran test case 28 to

see if it could also reveal the correct algorithm. The results of compiling test case 28, with the

pragma TIME.SLICE (0.05) statement, using the VAX Ada (vl.0) Compiler and executing it on a

VAX 8600 computer system are provided in Tables B.22 through B.24 of Appenlix B. I compiled

the program once, then executed it three times to produce three sets of results.

These results show the same relationships as encountered with the results of the Alsys PC AT

Ada Compiler with the 'SLICE' option set to 50ms. In all three runs of test case 28 the execution

sequence and comparative timing of the starts and finishes reveal that the RR algorithm was used.

The only problem with these results was the lack of distinction between the start times for tasks

B & C, and tasks E & F. The length of execution time for the two 'Small-Burst' tasks was not

long enough to be measured by the system. If given more time, I would rerun this test case with

a longer burst time for the small, medium, and large burst loops. Regardless of this problem, it

was still clear that the start times were separated by the corresponding time required for a time

slice and context switching. The remaining discussion for finish times is the same as that provided

for running test case 28 on the Alsys PC AT Ada Compiler with the 'SLICE' option set to 50ms.

Overall, the execution sequence and the relationships of the start and finish times reveal that a RR

algorithm is being used I 'he run-time system of the VAX Ada (vl.0) Compiler when the time

slice pragma is used. Once again, this validates correct algorithm detection using this test case.

5-9

5.3 Meridian Ada Vantage Compiler

I used the Meridian AdaVantage (v2.1) Compiler because the user manual for this compiler

specified the method used for task scheduling. According to the Meridian AdaVantage (v2.1)

Compiler User's Manual, this compiler's "task scheduler is not preemptive (i.e. task scheduler

does not use time slicing)", instead "a single-processor round-robin prioritized scheduling system

switches tasks at activations, entry calls, completions, and wait conditions" (27:61). Although the

manual indicates a RR algorithm, the switching does not take place at predetermined time slice

intervals. Therefore, I would be more prone to label this a FCFS algorithm where preemptions

can occur when tasks request services of the run-time system. The analysis of the results obtained

should determine whether this type of algorithm is actually detected. The results of compiling test

cases 1 through 27 using the Meridian AdaVantage (v2.1) Compiler and executing these compiled

programs on a Zenith Z-248 computer (IBM-PC/AT compatible) system are provided in Tables

B.25 through B.27 of Appendix B. The following analysis is provided for these results.

Test Cases 1, 4, 7, 10, 13, 16, 22, & 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority algorithms.

Test Case 2, 3, 5, 9, 11, 12, 14, 18, 20, 21, 23, & 27 results do not differentiate between any

of the algorithms.

Test Cases 6, 8, 15, 17, 24, & 26 results do not reveal a clear distinction between FCFS or

SJ F algorithms.

Test Case 19 results do not distinguish between FCFS or Priority algorithms.

There was no single test case result which revealed a unique algorithm. But, the intersection

of all the test case results revealed that the Meridian AdaVantage (v2.1) Compiler most likely uses

a FCFS algorithm for task scheduling. This is consistent with the discussion provided above based

on the description in the user's manual.

5-10

Although the analysis of test cases 1-27 revealed a FCFS algorithm, I ran test case 28 to see

if it could also detect the correct algorithm. The result of compiling test case 28 using the Meridian

AdaVantage Compiler (v2.1) and executing it on the Zenith Z-248 computer system is provided

in Table B.28 of Appendix B. Due to time constraints, I only ran test case 28 one time on the

Meridian AdaVantage Compiler.

The start times for these results are clearly separated by the corresponding time it would

take for the preceding task to complete a CPU burst. This would imply that either SJF or FCFS is

used. But, since the completion order is the same as the starting order and the separation of finish

times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,

the execution sequence and the relationships of the start and finish times confirm that the Meridian

AdaVantage (v2.1) Compiler uses a FCFS algorithm to schedule tasks. This also validates that

this test case can be used for FCFS algorithm detection.

5.4 Elisi/Verdir Ada Compiler

I used the Elxsi/Verdix Ada Compiler because it was convenient and fast. The Elmsl/Verdiz

Ada (v5.4) Development Systems Manual points out that "by default, all Ada tasks run together as

a single process (this is standard practice in Ada compilers)" (26). Although their comment does

not specify a particular scheduling algorithm, it implies that a RR algorithm scheme is used to

permit the tasks to 'run together'. The analysis of the results obtained should determine whether

this type of algorithm is actually detected. The results of compiling test cases 1 through 27 using

the Elxsi/Verdix Ada (v5.4) Compiler and executing these programs on the Elxsi computer system

are provided in Tables B.29 through B.31 of Appendix B. The following analysis is provided for

these results.

Test Case 1, 4 & 6 results reveal a RR algorithm. For some reason task A starts first, but

doesn't f nish first. This could be due to the inability to accurately model the task arrival times.

5-11

In any case, the algorithm cannot be FCFS, SJF or Priority because the start time for task B is

not equal to 0 or C.

Test Case 2, 11, & 20 results do not distinguish between RR or Priority algorithms. This is

due to task B unexpectedly starting before task A. This could be caused by task B being in the

Ready queue while task A is blocked due to the busy wait delay, which is related to modeling task

arrival times.

Test Case 3, 12, & 21 results indicate either RR or Priority as noted above, but with the

tasks swapped around.

Test Case 5, 9, 14, 18, 23, &1 27 results do not differentiate between any of the algorithms.

Test Case 7, 16, 19, & 25 results reveal RR, but the TS seems longer than it should be

(could be due to multi-user aspect of computer system). It definitely can't be FCFS, SJF or

Priority because the start time for task A is not equal to C.

Test Case 8, 10, 13, 15, 17, 22, 24, & 26 results reveal the RR algorithm was used.

Although there are some unexpected results due to the inability to accurately model task

arrival times, it seems conclusive that a RR algorithm is being used.

Here, I ran test case 28 to validate the conclusion reached with the first twenty-seven test cases.

The results of compiling test case 28 using ti'. Elxsi/Verdix Ada (v5.4) Compiler and executing it

on the Elxsi computer system is provided in Tables B.32 through B.34 of Appendix B. I compiled

the program once, then executed it three times to produce three sets of results. Analysis of these

results revealed the following information.

These results showed the same relationships as were encountered with the VAX Ada (1.0)

compiler. Again, the same problem with start times was encountered. And, if given more time, I

would have rerun this test case with longer CPU burst times. Regardless of this problem, the start

times for tasks which followed a long or medium CPU burst were separated by the time required

5-12

for a time slice and context switching. If either FCFS or SJF were being used, the duration

between task start times would be much larger. Additionally, the sequence of finish times, and

the relationship between the finish times for tasks A & D, tasks B & E, and tasks C & F reveal

a RR algorithm is being used. Thus, the execution sequence and comparative timing of the starts

and finishes for this single test case support the conclusion reached with the first twenty-seven test

cases.

5.5 Encore/Verd:x Concurrent Ada Compiler

I used the Encore/Verdix Concurrent Ada (v5.5) Compiler to determine whether Verdix used

the same scheduling algorithm in separate compilers designed for two different computer systems.

Though the Encore is a parallel computer system, the Encore operating system permits the user to

select the number of processors to be used. All test cases were run on the Encore computer system

under a single processor environment using the Encore/Verdix Concurrent Ada (v5.5) compiler. I

was not able to locate any documentation for the Encore/Verdix Concurrent Ada (v5.5) Compiler.

Thus, I had no prior knowledge of which scheduling algorithm is used with this run-time system.

The results of compiling test cases 1 through 27 using the Encore/Verdix Concurrent Ada (v5.5)

Compiler and executing these programs on the Encore computer system are provided in Tables

B.35 through B.37 of Appendix B. The following analysis is provided for these results.

Test Cases 1, 4, 7, 10, 13, 16, 22, &1 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority algorithms.

Test Case 2, 3, 5, 9, 11, 12, 14, 18, 20, 21, 23, & 27 results do not differentiate between any

of the algorithms.

Test Cases 6, 8, 15, 17, 24, & 26 results do not reveal a clear distinction between FCFS or

SJF algorithms.

Test Case 19 results do not distinguish between FCFS or Priority algorithms.

5-13

There was no case where the results of an individual test case singled out a unique algorithm.

But, the intersection of all the test case results indicate that a FCFS algorithm is used by the

Encore/Verdix Concurrent Ada (v5.5) compiler.

After running test cases 1 - 27, I ran test case 28 to validate the conclusion noted above. The

result of compiling test case 28 using the Encore/Verdix Ada (v5.5) Compiler and executing it on

the Encore computer system is provided in Tables B.38 through B.40 of Appendix B. I compiled

the program once, then executed it three times to produce three sets of results. Analysis of these

results revealed the following information.

The start times for these results are clearly separated by the corresponding time it would

take for the preceding task to complete a CPU burst. This would imply that either SJF or FCFS is

used. But, since the completion order is the same as the starting order and the separation of finish

times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,

the execution sequence and the comparative timing of the starts and finishes indicate that the

Encore/Verdix Concurrent Ada (v5.4) Compiler uses a FCFS algorithm to schedule tasks. Thus,

the results of this single test case support the conclusion reached with the first twenty-seven test

cases.

5.6 Summary

The initial set of test cases (i.e. I thru 27) was used to successfully reveal the RR scheduling

characteristics of the Alsys compiler when the 'SLICE' option was used and of the VAX Ada

compiler when the 'TIME.SLICE' pragma was used. But, this initial set of test cases was only

partially successful when it came to revealing FCFS characteristics. The Meridian compiler's FCFS

algorithm characteristics were detected. However, this set of test cases could not be used to

conclusively detect the FCFS characteristics of the Alsys compiler when the 'SLICE' option was

set to zero, nor when the VAX Ada compiler was used without the TIME.SLICE pragma.

5-14

On the other hand, test case 28 was successfully used to reveal the RR algorithm character-

istics of the Alsys and VAX Ada compilers when the 'SLICE' option and TIME-SLICE pragma

were used, respectively. Additionally, this final test case was successfully used to reveal the FCFS

algorithm characteristics of the Meridian compiler, the Alsys compiler when the 'SLICE' option

was set to zero, and the VAX Ada compiler when the TIME-SLICE pragma was not used.

A summary of these findings is provided in Table 5.1.

Results Summary

Compiler Algorithm Used Algorithm Revealed Algorithm Revealed
by Compiler by Test Cases 1-27 by Test Case 28

Alsys w/out TIME SLICE FCFS Inconclusive FCFS
Alsys with TIME SLICE RR RR RR

VAX w/out SLICE pragma FCFS Inconclusive (*) FCFS
VAX with SLICE pragma RR RR RR

Meridian FCFS FCFS (**) FCFS
* - Priority characteristics were revealed when Pa A P.

- after intersection of all test case results.

Table 5. . Execution Results Summary

5-15

VI. Conclusion and Recommendations

The goal of this thesis effort was to develop a suite of Ada programs to reveal, for any Ada

compiler, the underlying task scheduling algorithm it uses. In pursuit of this goal, the following

steps were completed:

" a review of the current work with Ada task scheduling;

" an examination of different approaches to scheduling algorithm detection;

" identification of the parameters needed to differentiate between five scheduling algorithms;

" design of a set of test cases to control and measure the scheduling parameters;

" development and execution of Ada programs to model the test cases; and

" analysis of the execution results to validate successful algorithm detection.

The following sections address the conclusions from this effort and recommend future research

directions.

6.1 Conclusions

Based on my research of the current work with Ada task scheduling, I found that there

are many pi ulems associated with Ada task scheduling due to the ambiguity associated with

the tasking rules identified in the LRM. Until these changes are made to the Ada language, the

detection of the scheduling algorithm used by Ada run-time systems is very important to MCCR

system designers.

My first approach for detecting an Ada compiler's task scheduling algorithm used a suite of

twenty-seven different Ada programs. Each program modeled a test case in which the start and

finish times of the two tasks was dependent on the relationships between their arrival times, service

times, and priorities. Analysis of the results obtained with this approach disclosed that only the

6-1

RR algorithm could be distinguished. Other algorithms could not because unexpected results were

encountered whenever the start and finish times of a test case were sensitive to task arrival times

(precise control of task arrival times is not possible in Ada).

A second approach revealed that precise control of task arrival times was not as important for

algorithm detection as originally anticipated. This approach used a single Ada program containing

six tasks, and which required control of only CPU burst time. This controlled CPU burst time

approach was used to correctly detect the task scheduling characteristics of algorithms used by

several Ada run-time systems. The program accurately reflected that the Alsys PC AT Ada (v3.2)

compiler uses a RR task scheduling algorithm when the SLICE option is set greater than zero, and

a FCFS task scheduling algorithm when the SLICE run-time option is set to zero. Additionally.

it reflected that the VAX Ada (vl.0) run-time system uses a RR task scheduling algorithm when

the pragma TIME-SLICE (0.05) statement is included in the program, or a FCFS task scheduling

algorithm when the pragma TIME-SLICE (0.05) statement is not included. Finally, the program

reflected that the Meridian AdaVantage (v2.1) compiler uses a FCFS algorithm for task scheduling.

Since none of the Ada compilers used either SJF algorithm for task scheduling, the program

was not validated for these. However, based on the distinct finish times which are expected when

either of the SJF algorithms are used, the program should reflect SJF characteristics also.

Although I did not prove that absolute algorithm detection is possible, I've shown that it is

possible to use an Ada program to distinguish one task scheduling algorithm from a restricted set

of algorithms. Thus, it should be feasible to expand this program to a suite of Ada programs which

will reveal, for any Ada compiler, the underlying task scheduling algorithm it uses.

6.2 Recommendations

This thesis effort has laid the groundwork for future development of an automated tool to

assist DoD software designers in the development of MCCR systems using Ada. The following

6-2

recommendations could improve the detection capability of the Ada program developed thus far.

I recommend adding a prograi-, to detect the characteristics of a Priority algorithm. This

program would contain one additional task with a priority which is higher than the current six

tasks. Additional Ada programs could be added to handle the detection of other algorithms as

appropriate.

The upper bound of the 'BURST-TYPE' declaration in the DETECT procedure should be

changed from a hard coded value to a parameter. With this change, the program could interactively

prompt the user to enter the desired upper bound value. This value impacts the number of "CPU

burst' iterations, and subsequently impacts the length of time required to complete a given CPU

burst. The size of the value should be based on whether the Ada compiler being investigated is

targeted for a PC or mini-computer. This would permit execution on any size system, without

having to change the hardcoded value of the upper bound and recompiling the program.

An additional future enhancement would be to automatically detect the processor speed

by measuring the start and finish time of a predetermined CPU burst. Then, completion time

could be automatically computed and used to determine the upper bound for the BURST-TYPE'

declaration. During execution of the test suite, results could be recorded and then automatically

analyzed to possibly predict the scheduling algorithm used. In this way, all user interaction could

be removed.

The final recommendation would be to formally verify the test suite of Ada programs used

to detect the task scheduling algorithms. This thesis effort did not prove that a given algorithm

was used, the results produced here have only demonstrated the feasibility of this approach by

revealing the algorithm characteristics exhibited by Ada run-time systems. The development of

formal specifications, accompanied by a formal proof that the specifications do, in fact, distinguish

between individual scheduling algorithms would improve the confidence of using this approach for

scheduling algorithm detection.

6-3

6.3 Thests Contribution

Previous attempts at dealing with the limitations associated with Ada's tasking model were

aimed toward working around these limitations or changing the language. The work-arounds uti-

lize pragmas and other inefficient constructs which can slow down program execution. The rec-

ommended changes to Ada may prove to be very slow at coming about. However, identification

of an Ada compiler's task scheduling algorithm permits selection of the compiler which efficiently

meets some scheduling requirements, without having to wait for Ada language changes to occur.

The results of this research have demonstrated that detecting an Ada compiler's task scheduling

algorithm is possible. And, it has provided a program which can be used by DoD MCCR system

designers to select an Ada compiler which meets their task scheduling needs.

6-4

Appendix A. Appendix A: Predicted Gantt Charts for Test Cases i through 27

A-I

Test Case I (CA = CB, AA = AB, PA = PB)

Algorithm Expected Schedule when SA < SB
RR Time 0 1 2 3 4 5 6 7 8

Task A B A B A B
FCFS Time 0 1 2 3 4 5 6 78

Task A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
Priority Time 0 1 2 3 4 5 6 7 8

Task A A A B B B

Table A.1. Predicted Gantt Chart (SA < SB) for Test Case 1

Test Case I (CA = CB,AA = AB,PA = PB)

Algorithm Expected Schedule when SB < SA
RR Time 0 1 2 3 4 5 6 7 8

Task B A B A B A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B A A A
Priority Time 0 1 2 3 4 5 6 7 8

Task B B B A A A

Table A.2. Predicted Gantt Chart (SB < SA) for Test Case I

Test Case 2 (CA =CB, AA = AB, PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task T A A B B B
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A AA B B B
Priority Time 0 1 2 3 4 5 6 7 8

Task A A A B B B

Table A.3. Predicted Gantt Chart for Test Case 2

A-2

Test Case 3 (CA= CB, AA = AB, PA < PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B B B A A A

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

Table A.4. Predicted Gantt Chart for Test Case 3

Test Case 4 (CA= CB, AA < AB, PA = PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A B A B A B
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A A A B B B

Table A.5. Predicted Gantt Chart for Test Case 4

Test Case 5 (CA= CB, AA < AB, PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
Priority Time 0 1 2 3 4 5 6 7 8

Task A A A B B B I I

Table A.6. Predicted Gantt Chart for Test Case 5

A-3

Test Case 6 (CA =CB, AA < AB, PA <) I
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A B B B A A
FCFS Time 1 2 3 4 5 6 7 8

Task A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A B B B
Priority Time 0 1 2 3 4 5 6 78

1 Task A B B B A A 1 _

Table A.7. Predicted Gantt Chart for Test Case 6

Test Case 7 (CA = CB, AA > AB, PA = PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B A B A B A

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B B B A A I I

Table A.8. Predicted Gantt Chart for Test Case 7

Test Case 8 (CA =CB,AA > AB,PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B A A A B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B A A A B B I I

Table A.9. Predicted Gantt Chart for Test Case 8

A-4

Test Case 9 (CA = CB,AA > AB,PA < PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B B B A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B A A A
Priority Time 0 1 2 3 4 5 6 7 8

Task B B B A A A

Table A.10. Predicted Gantt Chart for Test Case 9

Test Case 10 (CA = 2CB, AA = AB, PA = PB)

Algorithm Expected F :hedule when SA < SB
RR Time 0 1 2 3 4 5 6 7 8

Task A B A B A B A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task not applicable
Priority Time 0 Q1 213141516 718

Task A A A A A A B B B

Table A.11. Predicted Gantt Chart (SA < SB) for Test Case 10

Te tCase 10 (CA = 2CB,AA = AB, PA = PB)

Algorithm Expected Schedule when Sc < SA
RR Time 0 1 2 3 4 5 6 7 8

Task B A B A B A A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Table A.12. Predicted Gantt Chait (5B < SA) for Test Case 10

A-5

Test Case Il (C, = 2 CB,AA = AB, PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 45 6 7 8

Task A A A A A A B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

Priority Time 0 1 2 3 4 5 67 8
Task A A A A A A B B B

Table A.13. Predicted Gantt Chart for Test Case 11

Test Case 12 (CA = 2 CB, AA = AB, PA < PB) 3
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A A A
SJF Time u 1 2 3 4 5 6 7 8

Task B B B A A A A A A
Priority Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A A A

Table A.14. Predicted Gantt Chart for Test Case 12

Test Case 13 (CA = 2CB, AA < AB, PA= PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A B A B A B A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A A A A B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A A A A B B B
Priority Time 0 1 2 3 4 5 6 7 8

Task A A A A A A B B B

Table A.15- Predicted Gantt Chart for Test Case 13

A-6

Test Case 14 (CA = 2CB,AA < AB,PA > PB)

Algorithm] Expected Schedule

RR Time 0 1 2 13 4 5 6 7 8
l Task A A A A A A B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A AAA B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

Table A.16. Predicted Gantt Chart for Test Case 14

Test Case 15 (CA = 2CB,AA < AB,PA <PB)

Algorithm Expected Schedule
RR Time 0 R 2 3 4 5 6 7 8

Task A B B B A A A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A A A A B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A B B B A A A A A

Table A.17. Predicted Gantt Chart for Test Case 15

Test Case 16 (CA = 2CB, AA > AB, PA=PB)

Algorithm Expected Schedule

RR Time 0 1 2 3 4 5 6 7 8
Task B A B A B A A A A

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Table A.18. Predicted Gantt Chart for Test Case 16

A-7

Test Case 17 (CA = 2CB, AA > AB, PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B AAAA A A B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Priority Time 0 1 2 3 4 5 6 7 8
Task B A A A A A A B B

Table A.19. Predicted Gantt Chart for Test Case 17

Test Case 18 (CA = 2CB,AA > A,PA< P)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A A A

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

SJF Time 0 1 2 3 4 5 6 7 8

Task B B B A A A A AA

Priority Time 0 1 2 3 4 5 6 7 8
Task B B B A A A AA A

Table A.20. Predicted Gantt Chart for Test Case 18

TestCase 19 (2CA = CB, AA = AB, PA = PB)

A rithm Expected Schedule when SA < SB

R1. Time 0 1 2 3 4 5 6 7 8
Task A B A B A B B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

Priority 'l 'e 0 1 2 3 4 5 6 7 8

Task A A A B B B B B

Table A.21. Predicted Gantt Chart (SA < S,.) for Test Case 19

A-8

Test Case 19 (2 CA = CB,AA = AB,PA = PB)

Algorithm Expected Schedule when SB < SA

RR Time 0 [1 2 3 4 5 6 7 8
Task B AT B A B A B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task B B B B B B A A A

SJF Time 0 1 2 3 4 5 6 7 8
Task B B B B B B A A A

Priority Time u 1 2 3 4 5 6 7 8
Task B B B B B B A A A

Table A.22. Predicted Gantt Chart (SB < SA) for Test Case 19

Test Case 20 (2 CA = CB, AA = AB, PA > PB)]
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A A A B B B B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

Table A.23. Predicted Gantt Chart for Test Case 20

Test Case 21 (2CA = CB, AA = AB, PA < PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8 1

Task B B B B B B A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
Priority Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A

Table A.24. Predicted Gantt Chart for Test Case 21

A-9

Test Case 22 (2CA = CB, AA < AB, PA= PB)

Algorithm Expected Schedule

RR Time 0 1 2 3 4 5 6 7 8
Task A B A B A B B B B

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

Table A.25. Predicted Gantt Chart for Test Case 22

Test Case 23 (2CA = CB, AA < AB, PA > PB)

Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task A A A B B B B B B
FCFS Time 0 1 2 3 4 5 6 7 8

Task A A A B B B B B B
SJF Time 0 1 2 3 4 5 6 7 8

Task A A A B B B B B B
Priority Time 0 1 2 3 4 5 6 7 8

Task A A A IB B B B B

Table A.26. Predicted Gantt Chart for Test Case 23

Test Case 24 (2CA = Cd, AA < AB, PA < PB)

Algorithm Expected Schedule

RR Time 0 1 2 3 4 5 6 7 8
Task A B B B B B B A A

FCFS Time 0 1 2 3 4 5 6 7 8
Task A A A B B B B B B

SJF Time 0 1 2 3 4 5 6 7 8
Task A I A A B B B B B

Priority Time 0 1 2 3 4 5 6 7 8
Task A B B B B B B A A

Table A.27. Predicted Gantt Chart for Test Case 24

A-10

Test Case 25 (2CA = CB, AA > AB, PA = PB)
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

ITask B A B A B A B B B
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
Priority Time 0 1 2 3 4 5 6 7 8
_____ Task B B B B B B A A A

Table A.28. Predicted Gantt Chart for Test Case 25

Test Case 26 (2CA = CB, AA > AB, PA > PB)
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B A A A B B B B B
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A
Priority Time 0 1 2 3 4 5 6 7 8

Task "B A A ABBBB B

Table A.29. Predicted Gantt Chart for Test Case 26

Test Case 27 (2CA = CB, AA > AB, PA<PB)
Algorithm Expected Schedule
RR Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
FCFS Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
SJF Time 0 1 2 3 4 5 6 7 8

Task B B B B B B A A A
Priority Time 0 1 2 3 41 5 6 7 8

Task B B B B B B A A A

Table A.30. Predicted Gantt Chart for Test Case 27

A-I

Appendix B. Appendix B: Test Case Execution Results

8-I

Actual Results of Running Test Cases 1-9
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 0 seconds

Test Actual Measured Normalized Fi - Si Execution
Case Results Results Sequence

I S.A 37488.7890 6.869 6.921 SB - FB - SA - FA
FA 37495.7100 13.79

So 37481.9200 0 6.869
FB 37488.7890 6.869

2 SA 37543.9300 .05 6.87 SB - SA - FA - FB

F4 37550.8000 6.92
SB 37543.8800 0 13.779
FB 37557.6590 13.779

3 SA 37594.3500 0 13.79 SA - SB - FB - FA

FA 37608.1400 13.79

SB 37594.4600 .11 6.869
FB 37601.3290 6.979

4 SA 37612.0900 0 13.63 SA - S8 - FB - F4
FA 37625.7200 13.63

SB 37612.1490 .059 6.811
FB 37618.9600 6.87

5 SA 37629.7790 0 6.811 SA - FA - SB - FB
FA 37636.5900 6,811

SB 37636.5900 6.811 6.809
FB 37643.3990 13.62
S A 37678.6090 0 13.62 SA - S8 - FB - FA

FA 37692.2290 13.62

SB 37678.7700 .161 6.809
FB 37685.5790 6.97

7 SA 37696.2890 .109 6.82 SB - SA - FA - FB
FA 37703.1090 6.9299
SB 37696.1800 0 13.63
FB 37709.8100 13.63

8 SA 37713.9300 .17 6.809 SB - SA - F4 - FB
FA 37720.7390 6.979

SB 37713.7600 0 13.679
FB 37727.4390 13.679

9 SA 37738.2600 6.811 6.809 SB - F3 - SA - FA
FA 37745.0690 13.62

SB 37731.4490 0 6.811
FB 37738.2600 6.811

Table B.I. Alsys PC AT Ada Compiler Results

B-2

Actual Results of Running Test Cases 10-18
using Alsys PC AT Ada Compiler, Version 3.2

witlh a Slice Option of 0 seconds

'est Actual Measured Normalized F - Si Executiou
Case Results Results Sequence

10 SA 37993.2200 6.92 13.729 5, 8- FB - SA - FA

F 4 38006.9490 20.649
SB 37986.3000 0 6.92
FB 37993.2200 6.92

11 SA 38011.0200 .06 13.73 SB - SA -FA - FB

FA 38024.7500 13.79
SB 38010.9600 0 20.649

__ FB 38031.6090 20.649
12 SA 38062.0390 0 20.601 SA - SB -FB - F4

F.A 38082.6400 20.601
SB 38062.1000 .061 6.86
FB 38068.9600 6.921

13 SA 38091.5390 0 20.49 SA - SB -F - FA

FA 38112.0290 20.49

SB 38091.5900 .051 6.809
FB 38098.3990 6.86

14 SA 38133.5000 0 13.68 SA - FA - SB - FB
FA 38147.1800 13.68
SI 38147.1800 13.68 6.809
F, 38153.9890 20.489

15 SA 38157.9390 0 20.491 SA - SB - FB - F.1
FA 38178.4300 20.491

SB 38158.1090 .17 6.811
__ FB 38164.9200 6.981

16 SA 38182.5000 .11 13.67 SB - SA -F - FB

FA 38196.1700 13.78

SB 38182.3900 0 20.54

FB 38202.9300 20.54
17 SA 38310.1990 .17 13.67 SB - SA - FA - FB

FA 38323.8690 13.84
SB 38310.0290 0 20.54
FB 38330.5690 20.54

18 SA 38341.2790 6.809 13.681 Ss - FB - S4 - F4

FA 38354.9600 20.49

SB 38334.4700 0 6.809
__ FB 38341.2790 6.809

Table B.2. Alsys PC AT Ada Compiler Results (Cont'd)

B-3

Actual Results of Running Test Cases 19-27
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 0 seconds

Test Actual Measured Normalized F - S, Execution
Case Results Results Sequence
19 SA 38549.1800 13.79 6.859 SB - SA - SA - FA

F4 385560390 20.649
SB 38535.3900 0 13.79
FB 38549.1800 13.79

20 SA 38560.0000 .061 6.859 SB - SA - FA - FB

FA 38566.8590 6.92
SB 38559.6490 0 20.71
FE 38580.6490 20.71

21 SA 385888290 0 20.71 SA - SB -FB-FA
FA 38709.5390 20.71
SB 38588.8900 .061 13.729
FB 38602.6190 13.79

22 SA 38613.0390 0 20.539 SA - S - FB - FA
FA 38634.0390 20.539
SB 38613.2290 .05 13.679
FB 38627.2290 13.729

23 SA 38712.1990 0 6.811 SA - FA - S - FB

FA 38719.0100 6.811
SB 38719.0100 6.811 13.729
FB 38732.7390 20.54

24 SA 38743.7790 0 20.601 SA - SB - FB - FA

FA 38764.3800 20.601
SB 38743.9390 .16 13.68
FB 38757.6190 13.84

25 SA 38768.8800 .11 6.809 SB- SA -FA-FB
FA 38775.6890 6.919

SB 38768.7700 0 20.54

FB 38789.3100 20.54
26 SA 38793.6000 .17 6.809 SB - SA - FA -FB

FA 38800.4090 6.979
SB 38793.4300 0 20.599
FB 38814.0290 20.599

27 SA 38844.0690 13.67 6.87 SB - FB - SA -FA
FA 38850.9390 20.54
SB 38830.3990 0 13.67

FB 38844.0690 13.67

Table B.3. Alsys PC AT Ada Compiler Results (Cont'd)

B-4

First Run of Test Case 28

using Alsys PC AT Ada Compiler, Version 3.2Fwith a Slice Option of 0 seconds

Parameter Actual Measured Normalized F - Si
Results Results

SA 54053.1590 .159 180.54
F4 54233.6990 180.699
SB 54087.7600 34.76 173.679
FB 54261.4390 208.439
SC 54087.5490 34.649 166.871
FC 54254.5200 201.52
S_ 54073.8690 20.869 180.54
FD 54254.4090 201.409
SE 54066.9490 13.949 173.67
FE 54240.6190 187.619

SF 54053.0000 0 166.92
FF 54219.9200 166.92

Execution Sequence: SF - S- SE - SD - Sc - SB - FF - FA - FE - FD -Fc - FB

Table B.4. Alsys PC AT Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 0 seconds
Parameter Actual Measured Normalized F, - Sj

Results Results

SA 54589.6700 .11 180.54
FA 54470.2100 180.65
SB 54324.3290 34.769 173.671
FB 54498.0000 208.44
Sc 54324.1590 34.599 166.87
Fc 54491.0290 201.469
SD 54310.3800 20.82 180.54
FD 54490.9200 201.36

SE 54303.4600 13.9 173.67
FE c 4477.1300 187.57
Sir 54289.5600 0 166.86
FF 54456.4200 166.86

Execution Sequence: SF - SA -S - SD - SC - SB - FF - FA - FE - FD - Fc - FB

Table B.5. Alsys PC AT Ada Compiler Results (Cont'd)

B-5

Third Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 0 seconds

Parameter Actual Measured Normalized F - Si
Results Results

SA 54523.2100 .11 180.54

FA 54703.7500 180.65

So 54557.8190 34.719 173.67
FB 54731.4890 208.389
0 54557.7100 34.61 166.859
FG_ 54724.5690 201.469

_ D 54543.9200 20.82 180.54
FD 54724.4600 201-36
SE 54537.0000 13.9 173.67
FE 54710.6700 187.57
1 54523.1000 0 166.87
F_5 4689.9700 166.87

Execution Sequence: SF - SA SE - SD _ r¢ - Sb ZF FA-FE-FD-Fc-FB

Table B.6. Alsys PC AT Ada Compiler Results (Cont'd)

B-6

Actual Results of Running Test Cases 1-9
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 50 ms.

Test Actual Measured Normalized Fj - Si Execution
Case Results Results Sequence
I SA 47543.3900 .111 13.95 SB - SA - FB -FA

F4 47557.3400 14.061
SB 47543.2790 0 13.95

__ FB 47557.2290 13.95
2 SA 47561.3000 .061 6.859 SB - SA - FA - FB

FA 47568.1590 6.92

SB 47561.2390 0 13.79
FB 47575.0290 13.79

3 SA 47677.8990 0 13.851 SA - SB - F - FA

FA 47691.7500 13.851
SB 47677.8990 .061 6.869
PB 47684.8290 6.93

4 SA 47701.9600 0 13.729 SA - SB - FB - FA

FA 47715.6890 13.729
SB 47702.0200 .06 13.68
F 47715.6400 13.62

5 SA 47726.3500 0 6.809 SA - FA - SB - FB

FA 47733.1590 6.809

SB 47733.1590 6.809 6.87
FB 47740.0290 13.679

6 SA 47760.6800 0 13.84 SA - SB - FB - FA

FA 47774.5200 13.84
SB 47760.8400 .16 6.809
FB 47767.6490 6.969

7 SA 47778.5290 .109 13.62 SB - SA - FB - FA

FA 47792.0900 13.729
SB 47778.4200 0 13.76
FB 47792.0900 13.76

8 SA 47826.5900 .16 6.81 SB - SA - FA - FB
FA 47833.5600 6.97
SB 47826.5900 0 13.67
FB 47840.2600 13.67

9 SA 47850.9700 6.811 6.87 SB - FB - SA -FA
FA 47857.8400 13.681
SB 47844.1590 0 6.811
FB 47850.9700 6.811

Table B.7. Alsys PC AT Ada Compiler Results (Cont'd)

B-7

Actual Results of Running Test Cases 10-18
using Alsys PC AT Ada Compler, Version 3.2

with a Slice Option of 50 ins.

Test Actual Measured Normalized Fi - Si Execution
Case Results Results Sequence
10 SA 48112.1990 .109 20.761 SB - SA - FB - FA

FA 48132.9600 20.87
SB 48112.0900 0 14.01

EB 48126.1000 14.01

t $a 48136.8590 .049 13.731 SB - SA - FB - FA
FA 48150.5900 13.78
SB 48136.8100 0 20.6
FB 48157.4600 20.65

13 SA 48204.8590 0 20.65 SA - SB -FB- FA
FA 48225.5100 20.65
SB 48204.9090 .05 6.87
FB 48211.7790 6.92

13 5A 48229.6300 0 20.599 SA - SB - FB -FA
FA 48250.2290 20.599

SB 48229.6890 .059 13.731
FB 48243.4200 13.79

14 SA 48261.5390 0 13.681 SA - FA - SB - FB

FA 48275.2200 13.681

Sa 48275.2200 13.681 6.809
FB 48282.0290 20.49

15 SA 48338.2700 0 20.549 SA - SB - FE - FA

FA 48358.8190 20.549

S8 18338.4390 .169 6.811
FB 48345.2500 6.98

16 SA 48362.9390 .11 20.481 SB - SA - FB-FA
FA 48383.4200 20.591

SB 48362.8290 0 13.62

FB 48376.4490 13.62
17 SA 48387.4300 .16 13.679 SB - SA - FA - FB

FA 48401.1090 13.839

SB 48387.2700 0 20.54
FB 48407.8100 20.54

18 SA 48425.1700 6.811 13.67 SB - FB - SA -FA

FA 48438.8400 20.481
S1 48418.3590 0 6.811
F8 48425.1700 6.811

fable B.8. Alsys PC AT Ada Compiler Results (Cont'd)

B-8

Actual Results of Running Test Cases 19-27
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice of 50 ms.

est Actual Measured Normalized Fj - Si Execution
Case Results Results Sequence

19 SA 48657.6090 .109 13.84 SB - SA - FA - FB

FA 48671.4490 13.949
SB 48657.5000 0 20.76
FB 48678.2600 20.76

20 SA 48682.3290 .059 6.86 SB - SA - FA - FB
FA 48689.1890 6.919
SB 48682.2700 0 20.709
FB 48702.9790 20.709

21 SA 48715.2290 0 20.701 SA - SB -FB-FA
FA 48735.9300 20.701

SB 48715.2790 .05 13.79
FB 48729.0690 13.84

22 SA 48739.8900 0 13.729 SA - SB - FA - FB

FA 48753.6190 13.729
SB 48739.9390 .049 20.6
FB 48760.5390 20.649

23 SA 48786.0290 0 6.811 SA - FA - SB - Fb
FA 48792.8400 6.811
SB 48792.8400 6.811 13.729
FB 48806.5690 20.54

24 SA 48861.2700 0 20.599 SA - SB - FB - FA
FA 48881.8690 20.599

SB 48861.4390 .169 13.731
FB 48875.1700 13.9

25 SA 48885.8800 .11 13.729 SB - SA -FA-FB
FA 48899.4200 13.839
SB 48885.7700 0 20.65
FB 48906.4200 20.65

26 SA 48921.0900 .17 6.809 SB - SA - FA - FB

FA 48927.8990 6.979
SB 48920.9200 0 20.6
FB 48941.5200 20.6

27 SA 48959.2100 13.731 6.81 SB - FB - SA - FA

FA 48966.0200 20.541[SB 48945.4790 0 13.731
FE 48959.2100 13.731 1

Table B.9. Alsys PC AT Ada Compiler Results (Cont'd)

B-9

First Run of Test Case 28
using Alsys PC AT Ada Compiler. Version 3.2

with a Slice Option of 50 ms.
Parameter Actual Measured Normalized Fj - Si

Results Results
S5A 54826.3500 .111 209.92

F4 55036.2700 210.031

SB 54826.6190 .38 140.67
FB 54967.2890 141.05
Sc 54826.5690 .33 4.451
Fc 54831.0200 4.781

SD 54826.5100 .271 209.599
FD 55036.1090 209.87

SE 54826.4600 .221 140.439
FE 54966.8990 140.66

SF 54826.2390 0 4.061

FF 54830.3000 4.061

Execution Sequence: SF - SA - SE - SD - Sc - SB - FF - FC - FE - FB - F A -

Table B.10. Alsys PC AT Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using Aisys PC AT Ada Compiler, Version 3.2

with a Slice Option of 50 ma.

Parameter Actual Measured Normalized Fj - Si
Results Results

SA 55051.8190 .17 209.701
FA 55261.5200 209.871

SB 55052.0390 .39 140.94
F8 55192.9790 141.33

Sc 55051.9790 .33 4.51
Fc 55056.4890 4.84

SD 55051.9300 .281 209.759
FD 55261.6890 210.04

SE 55051.8690 .22 140.721
FE 55192.5900 140.941

SF 55051.6490 0 4.401
FF 55056.0500 4.401

Execution Sequence: SF - SA - SE - SD - Sc - SB - FF - Fc - FE - FB - FA - FD

Table B.i. Alsys PC AT Ada Compiler Results (Cont'd)

B-10

Third Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 50 ms.
Parameter Actual Measured Normalized Fj - S,

Results Results
SA 55271.7890 .159 209.761
FA 55481.5500 209.92
SB 55272.0100 .38 140.779
FB 55412.7890 141.159

Sc 55271.9600 .33 4.5
F¢ 55276.4600 4.83
SD 55271.8990 .269 209.76
FD 55481.6590 210.029
SE 55271.8500 .22 140.719
FE 55412.5690 140.939

SF 55271.6300 0 4.39
FF 55276.0200 4.39

Execution Sequence: SF - SA -S - SD - Sc - SB - FF - FC - FE - F8 - FA - FD

Table B.12. Alsys PC AT Ada Compiler Results (Cont'd)

B-11

Actual Results of Running Test Cases 1-9
using V4X Ada Compiler, Version 1.0
without the PRAGMA TIME-SLICE

Test Actual Measured Normalized Fi - S, Execution
Case Results Results Sequence

1 SA 44935.5800 0 .39 SA - F- SB -FB

FA 44935.9700 .39

So 44935.9700 .39 .38
FB 44936.3500 .77
S A 44941.1900 .02 .38 SB - SA -FA-FB
FA 44941.5700 .4 ____

5B 44941.1700 0 .76
FB 44941.9300 .76

3 SA 44946.0800 0 .77 SA - SB - -FA

FA 44946.8500 .77
SB 44946.1000 .02 .38

FB 44946.4800 .4
4 SA 44952.2900 0 .4 SA -F - SB - FR

FA 44952.6900 .4
SB 44952.6900 .4 .39

FB 44953.0800 .79
5 SA 44958.2200 0 .38 SA - FA - SB - FB

FA 44958.6000 ,38

SB 44958.6000 .38 .4
FB 44959.0000 .78

6 SA 44964.7600 0 .77 SA - SB - FB - FA

FA 44965.5300 .77

SB 44964.7800 .02 .37
_ FB 44965.1500 .39

7 SA 44970.0300 .37 .38 SB - FB - SA - FA
FA 44970.4100 .75

SB 44969.6600 0 .37
FB 44970.0300 .37

8 SA 44974.3100 .02 .37 SB - SA - FA - FB

FA 44974.6800 .39
SB 44974.2900 0
FB 44975.0400 .75

9 SA 44980.1800 .38 .3b SB - FB - SA - FA

FA 44980.5600 .76
SB 44979.8000 0 .38
FB 44980.1800 .38

Table B.13. VAX Ada Compiler Results

B-12

Actual Results of Running Test Cases 10-18
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIMESLICE

Test Actual Measured Normalized Fi - Si Execution
Case Results Results Sequence
10 SA 44996.9300 0 .76 SA - FA - SB - FB

F A 44997.6900 .76
;B 44997.6900 .76 .37

FB 44998.0600 1.13

11 SA 45007.6600 .02 .75 SB - SA -FA- PB

FA 45008.4100 .77
SB 45007.6400 0 1.15
FB 45008.7900 1.15

12 SA 45013.1600 0 1.14 SA - SB - FB - F4

FA 45014.3000 1.14

SB 45013.1800 .02 .37
FB 45013.5500 .39

13 SA 45020.2500 0 .83 SA - FA - 5B - FB

FA 45021 0800 .83
SB 45021.0800 .83 .39
FB 45021.4700 1.22

14 SA 45027.9900 0 .75 SA -FA- SB -FB

FA 45028.7400 .75
SB 45028.7400 .75 .39
FB 45029.1300 1.14

15 SA 45034.4700 0 1.25 SA - SB - FB - FA

FA 45035.7200 1.25
SB 45034.4900 .02 .45

FB 45034.9400 .47

16 SA 45055.9700 .39 .76 SB -FB- SA - FA

FA 45056.7300 1.15
SB 45055.5800 0 .38
FB 45055.9600 .38

17 SA 45062.8900 .02 .77 SB - SA - FA - FB
FA 45063.6600 .79
SB 45062.8700 0 1.16
FB 45064.0300 1.16

18 SA 45069.3000 .38 .76 SB - FB - SA - FA

FA 45070.0600 1.14

SB 45068.9200 0 .38
FB 45069.3000 .38

Table B.14. VAX Ada Compiler Results (Cont'd)

B-13

Actual Results of Running Test Cases 19-27
using VAX Ada Compiler, Version 1.0

without the PRAGMA TIMESLICE

Test Actual Measured Normalized F, - S Execution
Case Results Results Sequence
19 SA 45073.7700 0 .38 SA - FA- SB -FB

FA 45074.1500 .38
SB 45074.1500 .38 .75
FB 45074.9000 1.13

20 SA 45078.1800 .02 .37 SB - SA - FA I3

FA 45078.5500 .39
SB 45078.1600 0 1.21
FB 45079.3700 1.21

21 SA 45082.7400 0 1.18 SA - SB -FB -FA

FA 45083.9200 1.18
SB 45082.7600 .02 .76
FB 45083.5200 .78

22 SA 45087.6700 0 .37 SA - FA- SB -FB
FA 45088.0400 .37
SB 45088.0400 .37 .77
FB 45088.8100 1.14

23 SA 45092.3800 0 .38 SA - FA - SB - F8

FA 45092.7600 .38
SB 45092.7600 .38 .75
FB 45093.5100 1.13

24 SA 45097.5700 0 1.14 SA - SB -FB - FA
FA 45098.7100 1.14
SB 45097.5900 .02 .75

I FB 45098.3400 .77

25 SA 45106.6000 .77 .37 SB - FB - SA -FA

FA 45106.9700 1.14
SB 45105.8300 0 .76
FB 45106.5900 .76

26 SA 45112.9700 .02 .37 SB - SA -FA-FB

FA 45113.3400 .39
SB 45112.9500 0 1.16
FB 45114.1100 1.16

27 SA 45122.0500 .75 .4 SB - FB - SA - FA

FA 45122.4500 1.15
SD 45121.3000 0 .75
Fa 45122.0500 .75

Table B.15. VAX Ada Compiler Results (Cont'd)

B-14

First Run of Test Case 28
using V4X Ada Compiler, Version 1.0
wthout the PRAGMA TIME-SLICE

Parameter Actual Measured Normalized F, - S.
Results Results

SA 56E 19.5700 0 11.97
F.4 56531.5400 1 1.97
SB 56521.7900 2.22 12.59

FB 56534.3800 14.81
Sc 56521.7800 2.21 11.77
FC 56533.5500 13.98

SD 56520.8000 1.23 12.66
FD 56533.4600 13.89
SE 56520.3400 .77 11.73
FE 56532.0700 12.5
SF 56520.3300 .76 11.22
FF 56531.5500 11.98

Execution Sequence: SA - SF - SE - SD- Sc - SB - FA - FF - FE - FD - Fc - FB

Table B.16. VAX Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME-SLICE

Parameter Actual Measured Normalized Fi - So
Results Results

SA 56569.0100 0 11.32
FA 56580.3300 11.32
SB 56571.1100 2.1 11.46
FB 56582.5700 13.56
Sc 56571.1000 2.09 11.03
Fc 56582.1300 13.12

SD 56570.3200 1.31 11.8
FD 56582.1200 13.11
SE 56569.9100 .9 11.05
FE 56580.9600 11.95
SF 56569.9100 .9 10.43
FF 56580.3400 11.33

Execution Sequence: SA - SF -S - SD - Sc - SB - FA - FF - FE - FD - Fc -FB

Table B.17. VAX Ada Compiler Results (Cont'd)

B-15

Third Run of Test Case 28
ussng VAX Ada Compiler, Version 1.0
without the PRAGMA TIME-SLICE

Parameter Actual Measured Normalized Fj - Sj
Results Results

SA 56661.1700 0 14.56
FA 56675.7300 14.56
SB 56663.8800 2.71 14.34
FB 56678.2200 17.05

Sc 56663.8800 2.71 13.72
Fc 56677.6000 16.43
SD 56663.0900 1.92 14.5
FD 56677.5900 16.42
SE 56662.2000 1.03 14.25
FE 56676.4500 15.28
SF 56662.1900 1.02 13.55
FF 56675.7400 14.57

Execution Sequence: SA - SF - SE - SD - SC - SB - FA - FF - FE - FD - Fc - FB

Table B.18. VAX Ada Compiler Results (Cont'd)

B-18

Actual Results of Running Test Cases 1-9
using VAX Ada Compiler, Version 1.0

with the PRAGMA TLIMESLICE (0.05)

Test Actual Measured Normalized F - S Execution
Case Results Results Sequence

I SA 47806.4300 0 .73 SA - SB - FA - F
FA 47807.1600 .73
SB 47806.5800 .15 .69
FB 47807.2700 .84

4 SA 47818.3400 .02 .5 S A -- F4 -FB
FA 47818.8400 .52
SB 47818.3200 .0 1.09
FB 47819.4100 1.09

3 SA 47823.1100 0 .98 SA - SB - FB - FA
FA 47824.0900 .98
SB 47823.1300 .02 .48
FB 47823.6100 .5

6 SA 47831.5500 0 1.19 SA - SB - FB - FA
FA 47832.7400 1.19
SB 47831.6200 .07 1.07
FB 47832.6900 1.14

7 SA 47836.0900 0 .4 SA - FA - SB FB
FA 47836.4900 .4
SB 47836.4900 4 .56
FB 47837.0500 .96

8 SA 47840.8700 0 .77 SA - SB - FB- FA
FA 47841.6400 .77

SB 47840.8900 .02 .38
FB 47841.2700 .4

7 SA 47845.9800 .08 .68 SB - FB - FA
FA 47846.6600 .76
SO 47845.9000 0 .7
rF 47846.6000 ,7

8 SA 47850.2500 .02 .69 SB - SA -FA -FB

FA 47850.9400 .71
SB 47850.2300 0 1.24
FB 47851.4700 1.24

9 SA 47855.8400 .4 .38 SB -FB- SA - FA

FA 47856.2200 .78
SB 47855.4400 0 .4

FB 47855.8400 .4

Table B.19. VAX Ada Compiler Results (Cont'd)

B-17

Actual Results of Running Test Cases 10-18
using VAX Ada Compiler, Version 1.0

with the PRAGMA TIMESLICE (0.05)

Test Actual Measured Normalized F - Si Execution
Case Results Results Sequence
10 SA 4 7861.2200 0 1.16 SA - SB - FB- F .

FA 47862.3800 1.16

S_ 47861.3700 .15
FB 47862.0700 .8511 SA 47865.4000 .02 .77 SB - SA - FA - FB

F.4 47866.1700 .79
SB 47865.3800 0 1.17
FB 47866.5500 1.17

12 SA 47869.6900 0 1.16 SA - SB - FB - FA

FA 47870.8500 1.16
SB 47869.7100 .02 .39
FB 47870.1000 .41

13 SA 47874.7600 0 1.24 SA - SB - FB - F 4

FA 47876.0000 1.24
SB 47874.8300 .07 .71
FB 47875.5400 .78

14 SA 47879.1400 0 .76 SA - FA - SB - FB
FA 47879.9000 .76
SB 47879.9000 .76 .38
FB 47880.2800 1.14

15 SA 47882.8400 0 1.15 SA - SB -FB-FA
FA 47883.9900 1.15
SB 47882.8600 .02 .37
FB 47883.2300 .39

16 SA 47889.5900 .05 1.3 SB - SA - FB - FA
FA 47890.8900 1.35

SB 47889.5400 0 82
FB 47890.3600 .82

17 SA 47894.6200 02 .81 SB - SA - FA - FB

FA 47895.4300 .83

SB 47894.6000 0 1.24
FB 47895.8400 1.24

18 SA 47898.7800 .42 .85 SB - F - SA - FA

FA 47899.6300 1.27
S9 47898.3600 0 .42
FB 47898.7800 .42

Table B.20. VAX Ada Compiler Results (Cont'd)

B-18

Actual Results of Running Test Cases 19-27
using V4X Ada Compiler, Version 1.0

with the PRAGMA TIME-SLICE (0.05)

Test Actual Measured Normalized F - Si Execution
Case Results Results Sequence
19 SA 47903.6400 0 .74 SA -SB -FA-FB

FA 47904.3800 .74
SB 47903.8000 .16 1.13
FB 47904.9300 1.29

20 SA 47908.6600 .02 .39 SB - SA -FA - FB

FA 47909.0500 .41

SB 47908.6400 0 1.22
FB 47909.8600 1.22

21 SA 47912.8300 0 1.25 SA - SB - F8 - FA
FA 47914.0800 1.25
SB 47912.8500 .02 .85
F8 47913.7000 .87

22 SA 47919.1900 0 .8 SA - SB - FA - FB

FA 47919.9900 .8
SB 47919.2600 .07 1.17

FB 47920.4300 1.24
23 S 4 47924.9900 0 .41 SA - FA - SB - FB

FA 47925.4000 .41

SB 47925.4000 ,41 .86
FB 47926.2600 1.27

24 SA 47931.6800 0 1.21 SA - SB - FB - FA

FA 47932.8900 1.21

SB 47931.7000 .02 .82
FB 47932.5200 .84

25 SA 47937.3400 .05 .8 SB - SA - FA - FB

FA 47938.1400 .85

SB 47937.2900 0 1.2
FB 47938.4900 1.2

26 SA 47943.0000 .03 .38 SB - SA - FA - FB

FA 47943.3800 .41

SB 47942.9700 0 1.18
FB 47944.1500 1.18

27 SA 47949.8300 .82 .4 SB - FB - SA - FA

FA 47950.2300 1.22
SB 47949.0100 0 .82
FB 4749.8300 .82

Table B.21. VAX Ada Compiler Results (Cont'd)

B-19

First Run of Test Case 28
using VAX Ada Compiler, Version 1.0
with PRAGMA TIME-SLICE (0.05)

Parameter Actual Measured Normalized F, - S,

Results Results
.5 56000.9800 0 12.96
F4 56013.9400 12.96

SB 56001.3500 .37 9.06
FB 56010.4100 9.43
Sc 56001.3500 .37 1.7
Fc 56003.0500 2.07

56001.2100 .23 12.77
FD 56013.9800 13

_ _ 56001.1300 .15 9.18
FE 56010.3100 9.33
SF 56001.1300 .15 1.8
FF 56002.9300 1.95

Execution Sequence 0 - SF - SE -SD - Sc - SB - FF - FC - FE - FB - F.4 - FD

Table B.22. VAX Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using VAX Ada Compiler, Version 1.0
with PRAGMA TIME-SLICE (0.05)

Parameter Actual Measured Normalized F, - S,
Results Results

SA 56022.5000 0 14.04
FA 56036.5400 14.04
SB 56022.8000 .3 9.39
FB 56032.1900 9.69
Sc 56022.8000 .3 1.62
Fc 56024.4200 1.92
SD 56022.7200 .22 13.68
FD 56036.4000 13.9
SE 56022.6400 .14 9.4
FE 56032.0400 9.54

SF 56022.6400 .14 1.67
FF 56024.3100 1.81

Execution Sequence: SA - SF - SE - SD - Sc - SB - FF - Fc - FE - FB - FD - FA

Table B.23. VAX Ada Compiler Results (Cont'd)

B-20

Third Run of Test Case 28
using VAX Ada Compiler, Version 1.0
with PRAGMA TIME-SLICE (0.05)

Parameter Actual Measured Normalized Fi - Si
Results Results

SA 56042.6700 0 15.32

FA 56057.9900 15.32
SB 56042.9900 .32 9.46
FB 56052.4500 9.78
Sc 56042.9900 .32 1.54
Fc 56044.5300 1.86

SD 56042.9100 .24 14.98
FD 56057.8900 15.22
SE 56042.8300 .16 9.36
FE 56052.1900 9.52

SF 56042.8300 .16 1.63
FF 56044.4600 1.79

(Execution Sequence: SA - SF -SE - SD-S- S B - FF - Fc - FE- FB - FD - FA

Table B.24. VAX Ada Compiler Results (Cont'd)

B-21

Actual Results of Running Test Cases 1-9
_ _ -using Meridian Ada Vantage Compiler, Version 2.1

Test Actual Measured Normalized F - Si Execution
Case Results Results Sequence

1 SA 45508.5099 9.44 9.4501 SB - FB - SA - FA
F4 45517.9600 18.8901

SB 45499.0699 0 9.44
FB 45508.5099 9.44

2 SA 45528.8900 0 9.45 SA - FA - 5B - FB

FA 45538.3400 9.45
SB 45538.3400 9.45 9.44
FB 45547.7800 18.89

3 SA 45561.6299 9.4499 9.44 SB - F- - SA - FA
FA 45571.0699 18.8899
SB 45552.1800 0 9.4499
FB 45561.6299 9.4499

4 SA 45575.4100 0 9.45 SA - FA - SB - FB

FA 45584.8600 9.45

SB 45584.9100 9.5 9.45
FB 45594.3600 19.95

5 SA 45598.8100 0 9.4499 SA - FA - SB - FB

FA 45608.2599 9.449
SB 45608.3100 9.5 9.499
FB 45617.7599 18.9499

6 SA 45640.5000 0 9.45 SA -FA - SB -FB

FA 45649.9500 9.45

SB 45650.0000 9.5 9.45
FB 45659.4500 18.95

7 SA 45679.3300 9.5 9.45 SB - F - SA - FA
FA 45688.7800 18.95

SB 45669.8300 0 9.45
FB 45679.2800 9.45

8 SA 45720.5200 9.5 9.45 SB - FB - SA - FA

FA 45729.9700 18.95
S8 45711.0200 0 9.45
FB 45720.4700 9.45

9 SA 45743.5400 9.5 9.45 SB - FB - SA - FA
FA 45752.9900 18.95

SB 45734.0400 0 9.44
FB 45743.4800 9.44

Table B.25. Meridian AdaVantage Compiler Results

B-22

Actual Results of Running Test Cases 10-18
using Meridian Ada Vantage Compiler, Version 2.1

Test Actual Measured Normalized F - Si Execution
Case Results Results Sequence
10 SA 47558.8799 9.4499 18.6801 SB - FB - SA - F4

FA 47577.5600 28.13
SB 47549.4300 0 9.4499
FB 47558.8799 9.4499

11 SA 47586.6200 0 18.67 SA - FA - SB - FB
FA 47605.2900 18.67
SB 47605.2900 18.67 9.45
FB 47614.7400 28.12

12 SA 47628.6400 9.4501 18.67 S - F8 - SA - FA
FA 47647.3100 28.1201

SB 47691.1899 0 9.4501
FB 47628.6400 9.4501

13 SA 47651.7599 0 18.6701 SA - FA - SB - FB
FA 47670.4300 18.6701

SB 47670.4900 18.7301 9.4499
FB 47679.9399 28.18

14 $A 47684.3300 0 18.6799 SA - FA - SB - FB

FA 47703.0099 18,6799

SB 47703.0600 18.73 9.4499
FB 47712.5099 28.1799

15 SA 47727.0600 0 18.84 SA - FA - SB - FB
FA 47745.9000 18.84
SB 47745.9600 18.9 9.44
FB 47755.4000 28.34

16 SA 47769.6299 9.6699 18.6701 SB - FB - SA - FA

FA 47788.3000 28.34

S8 47759.9600 0 9.67
FB 47769.5800 9.62

17 SA 47801.9300 9.51 18.67 SB - FB - SA - FA
FA 47820.6000 28.18

SB 47792.4200 0 9.45
FB 47801.8700 9.45

18 SA 47834.1700 9.5 18.67 SB - FB - SA - FA
FA 47852.8400 28.17

SB 47824.6700 0 9.44
FB 47834.1100 9.44

Table B.26. Meridian AdaVantage Compiler Results (Cont'd)

B-23

Actual Results of Running Test Cases 19-27
using Meridian Ada Vantage Comptler, Verson 2.1

Test Actual Measured Normalized F - Si Execution
Case Results Results Sequence

19 Sa 50889.5600 18.67 9.4459 SA - F - SA - FA
FA 50899.0099 28.1199
SB 50870.8900 0 18.67
FB 50889.5600 18.67

20 SA 50903.4000 0 9.45 SA - FA - SB - FB
FA 50912.8500 9.45
SB 50912.8500 9.45 18.68
FB 50931.5300 28.13

21 SA 50954.7599 18.6799 9.4501 SB - FB - SA - F
FA 50964.2100 28.13
SB 50936.0800 0 18.6799
FB 50954.7599 18.6799

22 SA 50968.3300 0 9.44 SA - FA- SB - FB
FA 50977.7700 9.44

SB 50977.8300 9.5 18.67
FB 50996.5000 28.17

23 SA 51000.6800 0 9.44 SA - FA- SB - FB

FA 51010.1200 9.44
SB 51010.1800 9.5 18.67
FB 51028.8500 28.17

24 SA 51050.9300 0 9.4499 SA - FA SB - FB

IFA 51060.3799 9.4499
SB 51060.4399 9.5099 18.6701
FB 51079.1100 28.18

25 SA 51102.4300 18.73 9.45 SB - FB SA - FA
FA 51111.9000 28.18

SB 51083.7200
0 18.68

FB 51102.4000 18.68

26 SA 51134.7500 18.73 9.45 SB - FB- SA - FA
FA 51144.2000 28-18
SB 51116.0200 0 18.68
FB 51134.7000 18,68

27 SA 51166.9900 18.7301 9.4499 SB - FB- SA - FA

FA 51176.4399 28.18

SB 51148.2599 0 18.68
FB 51166.9399 18.68

Table B.27. Meridian AdaVantage Compiler Results (Cont'd)

B-24

First Run of Test Case 28
using Meridian AdaVantage Compiler, Version 2.1

Parameter Actual Measured Normalized Fj - Si
Results Results

SA 59526.8700 37.9 244.75
FA 59771.6200 282.65
SB 59517.4200 28.45 235.5199
FB 59752.9399 263.9699

Sc 59517.2599 28.2899 226.2401
Fc 59743.5000 254.53

SD 59498.5800 9.61 244.75
FD 59743.3300 254.36
SE 59489.1400 .17 235.52
FE 59724.6600 235.69

SF 59488.9700 0 226.19
F_ 59715.1600 226.19

Execution Sequence: SF - SE - SD - Sc -- SB SA - FF - FE - FD - FC - FB - FA

Table B.28. Meridian AdaVantage Compiler Results (Cont'd)

B-25

Actual Results of Running Test Cases 1-9
using Elzsi/Verdix Ada Compiler, Version 5.4

Test Actual Measured Normalized F, - Si Execution
Case Results Results Sequence

1 SA 47780.416 0 3.0 SA - SB - FB - FA
FA 47783.416 3.0
SB 47780.512 .096 2.404
FB 47782.916 2.5

2 SA 47790.916 .1 1.4 SB - SA - FA-FB

FA 47792.316 1.5
SB 47790.816 0 2.9
FB 47793.716 2.9

3 SA 47800.716 0 2.9 SA - SB -FB-FA
FA 47803.616 2.9
SB 47800.816 .1 1.4
FB 47802.216 1.5

4 SA 47814.120 0 3.3 SA - SB - FB - F.A
FA 47817.420 3.3
SB 47814.220 .1 2.596
FB 47816.816 2.696

5 SA 47826.020 0 1.4 SA - FA - SB - FB

FA 47827.420 1.4
SB 47827.420 1.4 1.4
FB 47828.820 2.8

6 SA 47836.920 0 2.9 SA - SB - FB - FA
FA 47839.820 2.9
SB 47837.020 .1 1.4
FB 47838.420 1.5

7 SA 47850.020 1 1.8 SB - SA -FB-FA

FA 47851.820 2.8
SB 47849.020 0 2.404
FB 47851.424 2.404

8 SA 47859.724 .1 1.4 SB - SA -FA-FB

FA 47861.124 1.5
58 47859.624 0 2.8
F9 47862.424 2.8

9 SA 47872.020 1.396 1.404 SB - FB - SA - FA

FA 47873.424 2.8
SB 47870.624 0 1.396
FB 47872.020 1.396

Table B.29. Elxsi/Verdix Ada Compiler Results

B-26

Actual Results of Running Test Cases 10-18
using Elzsi/Verdix Ada Cmptler, Version .5.4

Test Actual Measured Normalized F - Si Execution

Case Results Results Sequence
10 SA 47886.624 0 4.4 SA - SB -F - FA

FA 47891.024 4.4
SB 47886.724 .1 2.4
FB 47889.124 2.5

11 SA 47897.524 .096 3 SB - SA - FA - FB
F 4 47900.524 3.096
SB 47897.428 0 4.8

FB 47902.228 4.8
12 SA 47910.528 0 4.296 SA - SB - FB - FA

FA 47914.824 4.296
SB 47910.624 .096 1.404
FB 47912.028 1.5

13 SA 47922.528 0 4.404 SA - SB - F8 - FA

FA 47926.932 4.404

SB 47922.624 .096 2.404
F 47925.028 2.5

14 SA 47935.628 0 2.804 SA - FA - SB - F

FA 47938.432 2.804 _=

S8 47938.432 2.804 1.396
FB 47939.828 4.2

15 SA 47953.132 0 4.9 SA - SB - P8 - FA

FA 47958.032 4.9

SB 47953.232 .1 1.4
Fa 47954.632 1.5

16 SA 47968.736 1 3.296 SB - SA - F8 - FA

FA 47972.032 4.296
SB 47967.736 0 2.396
FB 47970.132 2.396

17 SA 47978.736 .104 3.7 SB - SA - FA - F

FA 47982.436 3.804
SB 47978.632 0 5.4

FB 47984.036 5.4
18 SA 47993.636 1.6 3.2 SB - FB - SA - FA

FA 47996.836 4.8
Sa 47992.036 0 1.6
FB 47993.636 1.6 1

Table B.30. Elxsi/Verdix Ada Compiler Results (Cont'd)

B-27

Actual Results of Running Test Cases 19-27
usng Elzsa/Verdiz Ada Compiler, Version 5.4

Test Actual Measured Normalized F, - Si Execution
Case Results Results Sequence

19 SA 48004.440 0 2.396 SA - SB - FA - FB

FA 48006.836 2.396

SB 48005.440 1 3.5
FB 48008.940 4.5

20 SA 48017.840 .1 1.4 SB - SA - FA - FB

FA 48019.240 1.5
SB 48017.740 0 4.5
FB 48022.240 4.5

21 SA 48028.640 0 4.3 SA - SB - FB - F.4
FA 48032.940 4.3

SB 48028.740 .1 2.9
FB 48031.640 3

22 5 A 48041.448 0 3.4 SA - SB - FA - F8

FA 48044.848 3.4

SB 48041.548 .1 4.2
FB 48045.748 4.3

23 SA 48053.344 0 1.404 SA - FA - SB - FB
FA 48054.748 1.404

SB 48054.748 1.404 2.896
FB 48057.644 4.3

24 SA 48066.644 0 4.404 SA - SB - FB - FA
FA 48071.048 4.404

SB 48066.748 .104 2.896
FB 48069.644 3

25 SA 48079.748 1 2.6 SB - SA - FA - FB

FA 48082.348 3.6
SB 48078.748 0 4.8
FB 48083.548 4.8

26 SA 48092.952 .1 1.7 SB - SA - FA - FB

FA 48094.652 1.8

SB 48092.852 0 5.2
FB 48098.052 5.2

27 SA 48112.752 5.8 2.3 SB - FB - SA - FA

FA 48115.052 8.1
SB 48106.952 0 5.8
FB 48112.752 5.8

Table B.31. Elxsi/Verdix Ada Compiler Results (Cont'd)

B-28

First Run of Test Case 28 7
using Elzst/Verdiz Ada Compiler, Version 5.4

Parameter Actual Measured Normalized F - Si

Results Results
SA 61406.192 0 57.408
FA 61463.600 57.408
SB 61407.392 1.2 44.912
FB 61452.304 46.112
Sc 61407.392 1.2 11.4
Fc 61418.792 12.6
SD 61406.392 .2 59.912
FD 61466.304 60.112

SE 61406.296 .104 45.2
FE 61451.496 45.304

SF 61406.296 .104 12.304
FF 61418.600 12.408

I-Execution Sequence: SA - SF - SE - SD - Sc - SB - FF - Fc - FE - FB - FA - FD

Table B.32. Elxsi/Verdix Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using Elxs:/Verdiz Ada Compiler, Version 5.4

Parameter Actual Measured Normalized F - Sj
Results Results

SA 61467.3040 0 92.904
FA 61560.2080 92.904
So 61469.0000 1.696 58.008
FB 61527.0080 59.704

Sc 61469.0000 1.696 12.304
Fc 61481.3040 14
SD 61468.0000 .696 92.608
FD 61560.6080 93.304

SE 61467.9040 .6 58.496
FE 61526.4000 59.096

SF 61467.9040 .6 10.696
FF 61478.6000 11.296

Execution Sequence: SA - SF- - SE - SD - Sc - SB - Fr - Fc - FE - FB - FD - FA

Table B.33. Elxsi/Verdix Ada Compiler Results (Cont'd)

B-29

Third Run of Test Case 28
us:ng EIxssl/Verdiz Ada Compder, Version 5.4

Parameter Actual Measured Normalized F, - Si
Results Results

SA 61562.0160 0 63
FA 61625.0160 63
SB 61563.2080 1.192 47.704
FB 61610.9120 48.896
Sc 61563.2080 1.192 9.104
Fc 61572.3120 10.296

SD 61562.2080 .192 60.112
FD 61622.3200 60.304

SE 61562.1040 .088 50.216
FE 61612.0160 50.304

SF 61562.1040 .088 8.208
FF 61570.3120 8.296

Execution Sequence: SA - SF -SE - 5 D - Sc - SB - FF - FC - FE - FB - FD - F

Table B.34. Elxsi/Verdix Ada Compiler Results (Cont'd)

B-30

Actual Results of Running Test Cases 1-9
uszng Encore/Verd:z Concurrent Ada Compier. Version 5.5

Test Actual Measured Normalized F, - Sj Execution
Case Results Results Sequence

I SA 42459.449 7.044 6.708 SB - FB - SA - A
FA 42466.157 13.752

SB 42452.405 0 7.038
FB 42459.443 7.038

2 SA 42466.805 0 6.709 SA -FA- SB - FB
FA 42473.514 6.709

SB 42473.520 6.715 7.035
F8 42480.555 13.75

3 SA 42488.749 7.044 6.708 SB - FB - SA - F4

FA 42495.457 13.752
SB 42481.705 0 7.037
FB 42488.742 7.037

4 SA 42496.725 0 6.707 SA - FA - SB - FB

FA 42503.432 6.707
SB 42503.439 6.714 7.034
FB 42510.473 13.748

5 SA 42511.704 0 6.71 SA -FA- SB -FB
FA 42518.414 6.71

SB 42518.473 6.769 7.035
FB 42525.508 13.804

6 SA 42526.208 0 6.71 SA - FA - SB - FB
FA 42532.918 6.71

SB 42532.924 6.716 7.036-
FB 42539.960 13.752

7 SA 42548.164 7.06 6.709 SB - FB - SA - FA

FA 42554.873 13.769

SB 42541.104 0 7.038
FB 42548.142 7.038

8 SA 42563.169 7.041 6.706 SB -FB- SA -FA

FA 42569.875 13.747
SB 42556.128 0 7.035

FB 42563.163 7.035

9 SA 42578.166 7.062 6.711 SB - FB - SA - FA

FA 42584.877 13.773
SB 42571.104 0 7.038
FB 42578.142 7.038

Table B.35. Encore/Verdix Concurrent Ada Compiler Results

B-31

Actual Results of Running Test Cases 10-18
using Encore/Verdix Concurrent Ada Compiler, Version 5.5

Test Actual Measured Normalized Fj - Si Execution
Case Results Results Sequence

10 S4 42593.148 7.043 13.441 SB -FB- SA - FA

F., 42606.589 20.484
SB 42586.105 0 7.037
FB 42593.142 7.037

11 SA 42607.817 0 13.409 SA -FA - SB - FB

FA 42621.226 13.409
SB 42621.232 13.415 7.033
FB 42628.265 20.448

12 SA 42635.948 7.043 13.412 SB -- FB - SA -FA

FA 42649.360 20.455
SB 42628.905 0 7.036
FB 42635.941 7.036

13 SA 42650.007 0 13.413 SA -FA - SB - FB

FA 42663.420 13.413
SB 42663.426 13.419 7.035
FB 42670.461 20.454

14 SA 42671.104 0 13.413 SA -FA - SB - FB

FA 42684.517 13.413
SB 42684.524 13.42 7.035
FB 42691.559 20.455

15 SA 42692.208 0 13.413 SA - FA - SB - FB

FA 42705.621 13.413
SB 42705.627 13.419 7.034
FB 42712.661 20.453

16 SA 42720.349 7.045 13.414 SB - F8 - SA - FA

FA 42733.763 20.459

SB 42713.304 0 7.038
FB 42720.342 7.038

17 SA 42742.063 7.045 13.417 SB - FB - SA - FA

FA 42755.480 20.462

SB 42735.018 0 7.039
__ 42742.057 7.039

18 SA 42763.769 7.065 13.411 SB - FB - SA - FA

FA 42777.180 20.476

SB 42756.704 0 7.037
FB 42763.741 7.037 1

Table B.36. Encore/Verdix Concurrent Ada Compiler Results (Cont'd)

B-32

Actual Results of Running Test Cases 19-27
ising Encore/Verdix Concurrent Ada Compiler, Version 5.5

Test Actual Measured Normalized Fi - Si Execution
Case Results Results Sequence

19 S4 42792.487 14.071 6.705 S8 - F8 -- 5A - FA

F4 42799.192 20.776
SB 42778.416 0 14.064
FB 42792.480 14.064

20 SA 42800.505 0 6.713 SA - FA - S8 - FB
F, 42807.218 6.713

58 42807.224 6.719 14.075
FB 42821.299 20.794

21 SA 42836.579 14.069 6.705 SB - FB S A - F.A
F4 42843.284 20.774

SB 42822.510 0 14.062
FB 42836.572 14.062

22 SA 42844.624 0 6.708 SA - FA - SB - FB

FA 42851.332 6.708
SB 42851.339 6.715 14.064
FB 42865.403 20.779

23 SA 42866.704 0 6.718 SA - FA - SB - FB
FA 42873.415 6.718

SB 42873.441 6.737 14.066
FB 42887.507 20.803

24 SA 42888.833 0 6.708 SA - FA - SB - FB

FA 42895.541 6.708

SB 42895.547 6.714 14.062
FB 42909.609 20.776

25 SA 42925.015 14.111 6.709 SB - FB - SA - FA
FA 42931.724 20.82

_SB 42910.904 0 14.069
FB 42924.973 14.069

26 SA 42947.097 14.071 6.707 SB - FB -SA -FA

FA 42953.804 20.778

SB 42933.026 0 14.065
FB 42947.091 14.065

27 SA 42969.191 14.087 6.707 SB - FB - SA - FA
FA 42975.898 20.794

SB 42955.104 0 14.068
FB 42969.172 14.068

Table B.37. Encore/Verdix Concurrent Ada Compiler Results (Cont'd)

B-33

First Run of Test Case 28
using Encore/Verd:x Ada Compiler, Version 5.5

Parameter Actual Measured Normalized F - S
Results Results

SA 63076.5990 27.895 181.68
FA 63258.2790 209.575
SB 63069.7390 21.035 174.469
FB 63244.2080 195.504
Sc 63069.5920 20.888 167.738
Fc 63237.3300 188.626
SD 63055.8670 7.163 181.298
FD 63237.1650 188.461
SE 63048.8460 .142 174.706
FE 63223.4100 174.706

SF 63048.7040 0 167.665
FF 63216.3690 167.665

Execution Sequence: SF - SE - SD - Sc - SB - SA- FF - FE - FD - Fc - FB - FA

Table B.38. Encore/Verdix Ada Compiler Results (Cont'd)

Second Run of Test Case 28
using Encore/Verdix Ada Compiler, Version 5.5

Parameter Actual Measured Normalized F, - Si
Results Results

SA 63286.8750 27.871 181.722
FA 63468.5970 209.593 _

SB 63280.0220 21.018 174.497
FB 63454.5190 195.515
Sc 63279.8760 20.872 167.763
Fc 63447.6390 188.635
SD 63266.1680 7.164 181.305
FD 63447.4730 188.469

SE 63259.1460 .142 174.584
FE 63433.7300 174.726

SF 63259.0040 0 167.689
FF 63426.6930 167.689

Execution Sequence: SF - SE - SD - Sc - S8 - SA - FF - FE - FD - FC - FB - F.4

Table B.39. Encore/Verdix Ada Compiler Results (Cont'd)

B-34

Third Run of Test Case 28
using Encore/Verdix Ada Compiler, Version 5.5

Parameter Actual Measured Normalized Fj - S,
Results Results

SA 63497.1770 27.873 181.68
FA 63678.8570 209.553
SB 63490.3260 21.022 174.452
FB 63664.7780 195.474
Sc 63490.1790 20.875 167.72
Fc 63657.8990 188.59
SD 63476.4660 7. 162 181.267
FD 63657.7330 118.429
SE 63469.4460 .142 174.541
FE 63643.9870 174.683
SF 63469.3040 0 167.644
FF 63636.9480 167.644

Execution Sequence: SF - SE - SD - Sc - SB - SA - FF - FE - FD - Fc - FB - FA

Table B.40. Encore/Verdix Ada Compiler Results (Cont'd)

B-35

Bibliography

1. A., Burns and A.J. Wellings. "'Real-Time Ada Issues," ACM SIGADA Ada Letters. 197
Special Edition, VII(6):43-46 (Fall 1987).

2. Alsys Inc., Waltham, MA. Alsys PC AT Ada Compiler User's Guide (Version 3.2 Editionu.
August 1987.

3. Booch, Grady. Seftware Engineering with Ada (Second Edition). Menlo Park, CA.: 1h,'
Benjamin/Cummings Publishing Company, 1987.

4. Borger, Mark and others. "A Testbed for Investigating Real-Time Ada Issues," .4 CM SGA 1).1
.Ada Letters, 1988 Special Edition, VIH(7):7-11 (Fall 1988).

5. Burger, Thomas M. and Kjel' W. Nielson. "An Assessment of the Overhead Associated with
Tasking Facilities and Task Paradigms in Ada," ACM SIGADA Ada Letters, VJI(1)9-.'>
(Jan/Feb 1987).

6. Coffman, Edward G. and Leonard Kleinrock. "Computer Scheduling Methods and Their
Countermeasures." In Spring Joint Computer Conference, pages 11-21, Vol 32 1968.

7. Cornhill, Dennis. "Session Summary: Tasking," ACM SIGADA Ada Letters, 1987 Special
Edition, VII(6):29-32 (Fall 1987).

8. Cornhill, Dennis and others. "Limitations of Ada for Real-Time Scheduling," .4 CM SIGA DA
Ada Letters, 1987 Special Edition, VII(6):33-39 (Fall 1987).

9. Cornhill, Dennis and Lui Sha. "Priority Inversion in Ada," ACM SIGADA Ada Letters,
VII(7):30-32 (Nov/Dee 1987).

10. Deitel, Harvey M. An Intoduction to Operating Systems. Reading, Mass.: Addison-\Vesley
Publishing Company, Inc., 1984.

11. Digital Equipment Corporation, Maynard, MA. VAX Ada Language Reference Manual (Vcr-
sion 1.0 Edition), February 1985.

12. DoD. Military Standard. Ada Programming Language - ANSI/MIL-STD-1815A. Department
of Defense, Washington, D.C., January 1983.

13. Finkel, Raphael A. An Operating Systems Vade Mecum. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1986.

14. Frankel, Gary. "Improving Ada Tasking Performance," ACM SIGADA Ada Letters, 1937
Special Edition, VII(6):47-48 (Fall 1987).

15. Gonzales, Jr., M. J. "Deterministic Processor Scheduling," ACM Computing Surveys.
9(3):177-182 (Sep 1977).

16. Goodenough, John B. and Lui Sha. "The Priority Ceiling Protocol: A Method for Minimizing
the Blocking of High Priority Ada Tasks," ACM SIGADA Ada Letters, 1988 Special Edition,
VIII(7):20-31 (Fall 1988).

17. Habermann, A. N. Introduction to Operating System Design. Chicago, Ill.: Science Research
Associates, Inc., 1976.

18. Kleinrock, Leonard. "A Continuum of Time-Sharing Scheduling Algorithms." In Spring Joint
Computer Conference, pages 453-458, Vol 36 1970.

19. Levine, Gertrude. "The Control of Priority Inversion in Ada," ACM SIGADA Ada Letters,
VIH(6):53-56 (Nov/Dec 1988).

BIB-I

20. Liu, Jane W.S. and Kwei-Jay Lin. "On Means to Provide Flexibility in Scheduling," .4C.I!
SIGADA Ada retters, 1988 Special Edition, VIII(7):32-34 (Fall 1988).

21. Locke, C. Douglass. and others. "Priority Inversion and Its Control: An Experimental hives-
tigation," ACM SIGADA Ada Letters, 1988 Special Edition, VIII(7):39-42 (Fall 1988).

22. Locke, C. Douglass. and David R. Vogel. "Problems in Ada Runtime Task Scheduling," .4 C If
SIGADA Ada Letters, 1987 Special Edition, VII(6):51-53 (Fall 1987).

23. McCormick, Frank. "Scheduling Dificulties of Ada in the Hard Real-Time Environment,"
ACM SIGADA Ada Letters, 1987 Special Edition, V[I(6):49-50 (Fall 1987).

24. Serlin, Omri. "Scheduling of Time Critical Processes." In Spring Joint Computer Conference,
pages 925-932, Vol 40 1972.

25. Silberschatz, Abraham and James L. Peterson. Operating System Concepts. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1988.

26. Verdix Corporation, San Hose, CA. Elxsi/Verdiz Ada Development System Reference (Version
5.4 Edition), 1988.

27. \Vhitehill, Stephen B. and others. Meridian Ada Vantage Compiler User's Guide (Version 2.1
Edition). Meridian Software Systems, Inc., Laguna Hills, CA.

BIB-2

Vita

Captain Gary A. Whitted Ie grad.

uated from Franklin High School in Franklin, Wisconsin, in 1972. He enlisted in the United States

Air Force on 7 November 1973, attended Basic Military Training School at Lackland AFB, Texas

for six weeks, and then transferred to Keesler AFB, Mississippi, where he completed Electronic

Equipment Repair training. Next, he was assigned to Patrick AFB, Florida from August 19744

until March 1980 where he worked as a Ground Radio Equipment Repairman in the 2179 Commu-

nications and Installation Group. In September 1979, he was selected for the Airman Education

Commissioning Program (AECP) and was transferred to the University of Florida in Gainesville.

He received the degree of Bachelor of Science in Engineering (Computer and Information Sciences)

in July 1982. Then, he attended Officer Training School (OTS) at Lackland AFB and received

a commission on 13 October 1982. From OTS, he wa assigned to Wright-Patterson AFB, Ohio

where he served as an Information Systems Requirements and Plans Officer at the Aeronautical

Systems Division's Information Systems and Technology Center from October 1982 until November

1985. He remained at WPAFB and transferred to the C-17 System Program Office (SPO) where he

served as a Software Design Manager until entering the School of Engineering, Air Force Institute

of Technology, in May 1988. While serving in the C-17 SPO and during his first year at AFIT, he

also completed coursework at Wright State University in Fairborn, Ohio and received the degree of

Masters in Business Administration in June 1989. Captain Whitted is married and has 3 children.

VITA-1

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89D-18

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENA
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Ada Language Control Facility ASD/SCEL

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT i TASK WORK UNIT
ASD Communications-Computer Systems Center ELEMENT NO. NO. NO ACCESSION NO
Wright-Patterson AFB, OH 45433 1 1 1

11. TITLE (Include Security Classification) (UNCLASSIFIED)

Determination of the Underlying Task Scheduling Algorithm for an Ada Run-Time System

12. PERSONAL AUTHOR(S)
Gary A Whitted, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis I FROM TO 1989, December 126

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Engineering, Ada task scheduling, Computer

12 _ 54 Programming, Ada Compilers, Algorithms

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: James W. Howatt, Maj, USAF
Assistant Professor of Computer Systems

Abstract:
The purpose of this thesis investigation was to determine whether the task scheduling algo-
rithm of an Ada compiler could be detected using a suite of Ada programs. This was done by
identifying the task parameters and algorithm characteristics which differentiate one sched
uling algorithm from the others. After these parameters and characteristics were identifi
, a set of test cases was developedto encompass the various parameter relationships requir
to detect the execution of individual algorithms. These test cases were modeled using Ada
programs. Then, the programs were compiled and executed using several Ada compilers where
the task scheduling algorithms of five run-time systems was known. The execution results
were analyzed to determine whether the Ada programs were capable of revealing the task
scheduling algorithm used by the Ada run-time system. The analyses showed that the detect-
ion of five scheduling schemes is oss'le us le Ada Droa

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED [R SAME AS RPT [] DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
James W. Howatt, Maj, USAF 513-255-3576 AFIT/ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

